Mcclellanhoward1577

Z Iurium Wiki

Verze z 8. 11. 2024, 12:28, kterou vytvořil Mcclellanhoward1577 (diskuse | příspěvky) (Založena nová stránka s textem „One can train an RL model to reduce discrepancies between simulated and real SAN data. The external control algorithm can adjust the simulator parameters t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

One can train an RL model to reduce discrepancies between simulated and real SAN data. The external control algorithm can adjust the simulator parameters to make the difference as small as possible. SANgo supports the standard OpenAI gym interface; thus, the software can serve as a benchmark for comparison of different learning algorithms.Cancer classification is a topic of major interest in medicine since it allows accurate and efficient diagnosis and facilitates a successful outcome in medical treatments. https://www.selleckchem.com/products/colcemid.html Previous studies have classified human tumors using a large-scale RNA profiling and supervised Machine Learning (ML) algorithms to construct a molecular-based classification of carcinoma cells from breast, bladder, adenocarcinoma, colorectal, gastro esophagus, kidney, liver, lung, ovarian, pancreas, and prostate tumors. These datasets are collectively known as the 11_tumor database, although this database has been used in several works in the ML field, no comparative studies of different algorithms can be found in the literature. On the other hand, advances in both hardware and software technologies have fostered considerable improvements in the precision of solutions that use ML, such as Deep Learning (DL). In this study, we compare the most widely used algorithms in classical ML and DL to classify the tumors described in the 11_tumor database. We obtained tumor identification accuracies between 90.6% (Logistic Regression) and 94.43% (Convolutional Neural Networks) using k-fold cross-validation. Also, we show how a tuning process may or may not significantly improve algorithms' accuracies. Our results demonstrate an efficient and accurate classification method based on gene expression (microarray data) and ML/DL algorithms, which facilitates tumor type prediction in a multi-cancer-type scenario.The uncertainty underlying real-world phenomena has attracted attention toward statistical analysis approaches. In this regard, many problems can be modeled as networks. Thus, the statistical analysis of networked problems has received special attention from many researchers in recent years. Exponential Random Graph Models, known as ERGMs, are one of the popular statistical methods for analyzing the graphs of networked data. ERGM is a generative statistical network model whose ultimate goal is to present a subset of networks with particular characteristics as a statistical distribution. In the context of ERGMs, these graph's characteristics are called statistics or configurations. Most of the time they are the number of repeated subgraphs across the graphs. Some examples include the number of triangles or the number of cycle of an arbitrary length. Also, any other census of the graph, as with the edge density, can be considered as one of the graph's statistics. In this review paper, after explaining the building blocks and classic methods of ERGMs, we have reviewed their newly presented approaches and research papers. Further, we have conducted a comprehensive study on the applications of ERGMs in many research areas which to the best of our knowledge has not been done before. This review paper can be used as an introduction for scientists from various disciplines whose aim is to use ERGMs in some networked data in their field of expertise.Skin lesion border irregularity is considered an important clinical feature for the early diagnosis of melanoma, representing the B feature in the ABCD rule. In this article we propose an automated approach for skin lesion border irregularity detection. The approach involves extracting the skin lesion from the image, detecting the skin lesion border, measuring the border irregularity, training a Convolutional Neural Network and Gaussian naive Bayes ensemble, to the automatic detection of border irregularity, which results in an objective decision on whether the skin lesion border is considered regular or irregular. The approach achieves outstanding results, obtaining an accuracy, sensitivity, specificity, and F-score of 93.6%, 100%, 92.5% and 96.1%, respectively.The use of end-to-end data mining methodologies such as CRISP-DM, KDD process, and SEMMA has grown substantially over the past decade. However, little is known as to how these methodologies are used in practice. In particular, the question of whether data mining methodologies are used 'as-is' or adapted for specific purposes, has not been thoroughly investigated. This article addresses this gap via a systematic literature review focused on the context in which data mining methodologies are used and the adaptations they undergo. The literature review covers 207 peer-reviewed and 'grey' publications. We find that data mining methodologies are primarily applied 'as-is'. At the same time, we also identify various adaptations of data mining methodologies and we note that their number is growing rapidly. The dominant adaptations pattern is related to methodology adjustments at a granular level (modifications) followed by extensions of existing methodologies with additional elements. Further, we identify two recurrent purposes for adaptation (1) adaptations to handle Big Data technologies, tools and environments (technological adaptations); and (2) adaptations for context-awareness and for integrating data mining solutions into business processes and IT systems (organizational adaptations). The study suggests that standard data mining methodologies do not pay sufficient attention to deployment issues, which play a prominent role when turning data mining models into software products that are integrated into the IT architectures and business processes of organizations. We conclude that refinements of existing methodologies aimed at combining data, technological, and organizational aspects, could help to mitigate these gaps.Anti-forgery information, transaction verification, and smart contract are functionalities of blockchain technology that can change the traditional business processes of IT applications. These functionalities increase the data transparency, and trust of users in the new application models, thus resolving many different social problems today. In this work, we take all the advantages of this technology to build a blockchain-based authentication system (called the Vietnamese Educational Certification blockchain, which stands for VECefblock) to deal with the delimitation of fake certificate issues in Vietnam. In this direction, firstly, we categorize and analyze blockchain research and application trends to make out our contributions in this domain. Our motivating factor is to curb fake certificates in Vietnam by applying the suitability of blockchain technology to the problem domain. This study proposed some blockchain-based application development principles in order to build a step by step VECefblock with the following procedures designing overall architecture along with business processes, data mapping structure and implementing the decentralized application that can meet the specific Vietnamese requirements.

Autoři článku: Mcclellanhoward1577 (Park Therkildsen)