Michaelsenkinney8409
The annual emissions of hydrocarbons (HC), CO, NOx, NO, NO2, HONO, HNO3, NOy, SO2, SO42-, BC, organic carbon (OC) and PM2.5 with corrected emission parameters are 3.82 × 105 kg, 4.35 × 106 kg, 5.36 × 106 kg, 4.40 × 106 kg, 9.58 × 105 kg, 1.03 × 105 kg, 3.83 × 103 kg, 5.47 × 106 kg, 3.56 × 105 kg, 1.31 × 104 kg, 5.43 × 104 kg, 4.73 × 103 kg and 7.22 × 104 kg, respectively, while the application of the maximum height of the mixing layer contributes to emission increases as high as 16.9% (NOx). see more An alternative estimation of BC emissions leads to an increase of 50% compared with first-order approximation 3 (FOA3), while a reduction in PM2.5 emissions can be expected by minimizing the FSC. The growing use of octocrylene (OC) in sunscreens has posed a great threat to aquatic organisms. In the present study, to assess its reproductive toxicity and mechanism, paired Japanese medaka (Oryzias latipes) (F0) were exposed to OC at nominal concentrations of 5, 50, and 500 μg/L for 28 d. Significant increases were observed in the gonadosomatic index (GSI) and hepatosomatic index (HSI) of F0 medaka at 500 μg/L OC (p less then 0.05) without significant differences in fecundity. The fertility was significantly decreased at all treatments (p less then 0.05). Significant increases in the percent of mature oocytes were observed at 5 and 500 μg/L OC, in which contrary to the percent of spermatozoa (p less then 0.05). The plasma sex hormones and vitellogenin levels significantly increased in males at all treatments and in females at 50 and 500 μg/L OC (p less then 0.05). In addition, the levels of fshβ and lhβ in the brains and the levels of fshr, lhr and cyp17α in the gonads were significantly upregulated in males at all treatments (p less then 0.05), in line with those of ar, erα, erβ and cyp19β in the brains of male and female. The upregulation of vtg in male and female livers was observed only at 500 μg/L OC and upregulation of star and hsd3β was observed in testis at all treatments (p less then 0.05). Continued exposure to OC significantly induced increases in the time to hatching, morphological abnormality rates, and cumulative death rates of F1 embryos, inconsistent with body length of F1 larvae (p less then 0.05). Therefore, the responses of the exposed fish at the biochemical and molecular levels indicated reproductive toxicity and estrogenic activity of OC, providing insights into the mechanism of OC. Glyphosate is the most popular herbicide used worldwide. This study aimed to investigate the adverse effects of glyphosate on the small intestine and gut microbiota in rats. The rats were gavaged with 0, 5, 50, and 500 mg/kg of body weight glyphosate for 35 continuous days. The different segments of the small intestine were sampled to measure indicators of oxidative stress, ion concentrations and inflammatory responses, and fresh feces were collected for microbiota analysis. The results showed that glyphosate exposure decreased the ratio of villus height to crypt depth in the duodenum and jejunum. Decreased activity of antioxidant enzymes (T-SOD, GSH, GSH-Px) and elevated MDA content were observed in different segments of the small intestine. Furthermore, the concentrations of Fe, Cu, Zn and Mg were significantly decreased or increased. In addition, the mRNA expression levels of IL-1β, IL-6, TNF-α, MAPK3, NF-κB, and Caspase-3 were increased after glyphosate exposure. The 16 S rRNA gene sequencing results indicated that glyphosate exposure significantly increased α-diversity and altered bacterial composition. Glyphosate exposure significantly decreased the relative abundance of the phylum Firmicutes and the genus Lactobacillus, but several potentially pathogenic bacteria were enriched. In conclusion, this study provides important insight to reveal the negative influence of glyphosate exposure on the small intestine, and the altered microbial composition may play a vital role in the process. Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain. Adult female zebrafish were exposed to the vehicle, 17β-estradiol (E2, 1 μg/L), or BPS (1, 10 and 30 μg/L) for 120 days. Fish were then tested in the object recognition (OR), object placement (OP), and social recognition tasks (SR). Chronic exposure to E2 and 1 μg/L of BPS improved fish performance in OP task. This was associated with an up-regulation in the mRNA expression of several subtypes of metabotropic and ionotropic glutamate receptors, an increase in the phosphorylation levels of ERK1/2 and CREB, and an elevated transcript abundance of several immediate early genes involved in synaptic plasticity and memory formation. In contrast, the exposure to 10 and 30 μg/L of BPS attenuated fish performance in all recognition memory tasks. The impairment of these memory functions was associated with a marked down-regulation in the expression and activity of genes and proteins involved in glutamatergic/ERK/CREB signaling cascade. Collectively, our study demonstrated that the long-term exposure to BPS elicits hermetic effects on the recognition memory in zebrafish. Furthermore, the effect of BPS on the recognition memory seems to be mediated by the glutamatergic/ERK/CREB signaling pathway. Chromium (VI) reduction by organic compounds is one of the major pathways to alleviate the toxicity and mobility of Cr(VI) in the environment. However, oxidative products of organic molecules receive less scientific concerns. In this study, hydroquinone (H2Q) was used as a representative organic compound to determine the redox reactions with Cr(VI) and the concomitant oxidative products. Spectroscopic analyses showed that Cr(III) hydroxides dominated the precipitates produced during redox reactions of Cr(VI) and H2Q. For the separated filtrates, the acidification induced the oxidative polymerization of organic molecules, accompanied with the complexation with Cr(III). The aromatic domains dominated the chemical structures of the black and fluffy organic polymers, which was different to the natural humic acids due to the shortage of aliphatic chains. Results of linear combination fitting (LCF) for Cr K-edge X-ray absorption near edge structure (XANES) spectra demonstrated that up to 90.4% of Cr inventory in precipitates derived after the acidification of filtrates was Cr(III) complexed with humic-like polymers, suggesting that Cr(III) possibly acted as a linkage among organic molecules during the polymerization processes of H2Q.