Fernandezmunk7607

Z Iurium Wiki

Verze z 7. 11. 2024, 23:51, kterou vytvořil Fernandezmunk7607 (diskuse | příspěvky) (Založena nová stránka s textem „The sensing mechanism of a reported fluorescence probe for cysteine, homocysteine and glutathione (Yin et al., 2018) has been investigated by time-dependen…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The sensing mechanism of a reported fluorescence probe for cysteine, homocysteine and glutathione (Yin et al., 2018) has been investigated by time-dependent density functional theory. Experimental absorption and emission spectra of the probe before and after thiol addition were reproduced well by theoretical calculations, which validated the rationality of the method. Optimized geometries showed that the probe molecule had distinctly different geometries in its ground and excited states. It corresponded to the photoisomerization process and explained the weak fluorescence of the probe molecule. Moreover, by the potential energy curve scan, photoisomerization was further confirmed to be a spontaneous process with a barrier that barely existed. Frontier orbital analysis indicated that this photoinduced isomerization of the probe molecule derived from the antibonding character for lowest unoccupied molecular orbital at its CC double bond. In contrast, probe-thiol complexes exhibited similar geometries in their ground and excited states, which was responsible for the strong fluorescence of the probe with thiols. Due to distinct excited-processes, the probe can be used to sense thiols by monitoring the fluorescent change.In the current study, novel thin films of a phenol-based push-pull azo dye, 2-acetyl-4-(4-chloro-phenylazo) phenol (ACAP), with tunable optical and electronic properties were designed, synthesized and characterized for UV photodetection applications. The crystalline structure and morphological features of the thermally evaporated ACAP thin films are investigated. The fabricated thin films exhibit an amorphous-like structure with low-intensity crystalline regions of average crystallite size of about 29.51 nm and a smooth surface with nanostructured sheets formation. The optical transmittance, reflectance, and absorption of ACAP thin films are measured in the spectral range UV-vis-NIR. A significant high UV absorption extending from 190 nm to 385 nm is observed with semi-transparency nature in the visible region. Furthermore, a good agreement is obtained between the estimated value of the direct energy gap that is obtained experimentally (3.62 eV) and that calculated from the theoretical DFT approach (3.74 eV). The dispersion behavior is analyzed in terms of the single oscillator model and is employed to estimate the dispersion parameters. Finally, an organic/inorganic heterojunction device based on Au/ACAP/n-Si/Al for UV photodetection is successfully fabricated. The current-voltage relations of the manufactured photodetector showed significant stability and sensitivity to the incident UV illumination. The fabricated UV photodetector exhibits responsivity ~25.7 mA/W, specific detectivity ~2 × 109 Jones, efficiency ~16.74%, a fast and reproducible ON/OFF switching behavior with 480 ms and 218 ms rise and fall time, respectively.Given the enzymatic properties and the oxidized surface of Pt nanomaterials, we demonstrated the intrinsic oxidase-like and peroxidase-like activities of platinum oxide (PtO2). The surface clean PtO2 nanoparticles with high water dispersibility were synthesized by a simple and green method. X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) results demonstrated that the prepared PtO2 nanoparticles mainly consisted of Pt (Ⅳ) state without Pt(0) chemical state. The enzymatic activity of PtO2 nanoparticles was verified by catalytic oxidation of several chromogenic substrates. Catalytic mechanism analysis suggested that PtO2 nanopartiles acted as peroxidase and oxidase enzyme mimics by promoting the generation of the reactive oxygen species (ROS). By combining glucose oxidase, a colorimetric assay for glucose detection was developed with the limit of detection of 10.8 μM. The successful application of the proposed detection assay in human serum samples demonstrated the promising practical application in clinical diagnosis, pharmacy and food.Bioanalyses are commonly performed with blood or serum samples. However, these analyses often require invasive and painful blood collection using a needle or finger pricking. Saliva is an alternative and very attractive biological medium for performing clinical analyses, since it contains many types of clinically relevant biomarkers and compounds. Its collection is straightforward and can be achieved in a non-invasive and stress-free way. However, the analytes are frequently present at low concentrations, while the viscosity of whole saliva hinders its analysis using paper devices, especially those with multiple layers (3D-μPADs). This work explores the use of a simple, fast, and low-cost saliva sample pretreatment using a cotton-paper-syringe filtration system, allowing the analysis of saliva samples using multilayer paper devices. The proposed methodology employs the oxidation of glucose and lactate, catalyzed by specific oxidase enzymes, producing hydrogen peroxide. The detection is based on the fluorescence quenching of carbon dots in the presence of hydrogen peroxidase. Auranofin in vivo The concentrations of the analytes showed good linear correlations with the fluorescence quenching, with LODs of 2.60 × 10-6 and 8.14 × 10-7 mol L-1 for glucose and lactate, respectively. The proposed method presented satisfactory intra-day and inter-day repeatabilities, with %RSD values in the range 3.82-6.61%. The enzymatic systems proved to be specific for the analytes and the matrix had no significant influence on the glucose and lactate determinations. The proposed methodology was successfully applied to saliva and serum samples and was validated using certified material.In addition to immunological disorders, human immunodeficiency virus (HIV) also causes metabolic abnormalities. Though successful in viral suppression and immune restoration, continued use of antiretroviral therapy (ART) has also been linked to the development of several metabolic ailments. Currently, the only clinical markers used to manage and monitor the development of HIV-induced metabolic disorders, disease progression as well as observing individual's response to antiviral treatment are CD4 count, viral loads and several other single variable colometric assays. Despite the common use of these clinical markers, these markers remain unreliable and limited in the ability to monitor the development of metabolic disorders as well as monitor treatment response. Given these limitations, it is imperative to discover and develop reliable biological markers for overall HIV disease management. Here, Raman spectroscopy was used to profile metabolic changes in the plasma of 22 HIV+ receiving a first-line tenofovir-based combination antiretroviral therapy compared to their 8 HIV+ ART- and 10 HIV- counterparts.

Autoři článku: Fernandezmunk7607 (Noer Allen)