Mcfarlandhumphries2961
Considering the trade-off between X-ray absorption and charge transport, we optimized the active layer thickness and achieved large-area and flexible X-ray detectors with state-of-the-art device performance, including extremely low dark current and noise, fast response, and high sensitivity of 142.1 μC Gyair-1 cm-2.Carboxyl-group specific chemical cross-linking is gaining an increased interest as a structural mass spectrometry/structural proteomics technique that is complementary to the more commonly used amine-specific chemistry using succinimide esters. One of these protocols uses a combination of dihydrazide linkers and the coupling reagent DMTMM [4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium] chloride, which allows performing the reaction at neutral pH. The reaction yields two types of products, carboxyl-carboxyl cross-links that incorporate the dihydrazide linker and zero-length carboxyl-amine cross-links induced by DMTMM alone. Until now, it has not been systematically investigated how the balance between the two products is affected by experimental conditions. Here, we studied the role of the ratios of the two reagents (using pimelic dihydrazide and DMTMM) and demonstrate that the concentration of the two reagents can be systematically adjusted to favor one reaction product over the other. Using a set of five model proteins, we observed that the number of identified cross-linked peptides could be more than doubled by a combination of three different reaction conditions. We also applied this strategy to the bovine 20S proteasome and the Escherichia coli 70S ribosome, again demonstrating complementarity and increased cross-link coverage.The spin state of antibonding orbital (eg) occupancy in LaCoO3 is recognized as a descriptor for its oxygen electrocatalysis. However, the Co(III) cation in typical LaCoO3 (LCO) favors low spin state, which is mediocre for absorbing oxygen-containing groups involved in oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), thus hindering its further development in electrocatalysis. Herein, both experimental and theoretical results reveal the enhancement of bifunctional electrocatalytic activity in LaCoO3 by N doping. More specifically, electron energy loss spectroscopy and superconducting quantum interference devices magnetic analysis demonstrate that the Co(III) cation in N-doped LaCoO3 (LCON) achieves a moderate eg occupancy (≈1) compared with its low spin state in LaCO3. First-principle calculation results reveal that N dopants play a bifunctional role of tuning the spin-state transition of Co(III) cations and increasing the electrical conductivity of LCO. Thus, the optimized LCON exhibits an OER overpotential of 1.69 V at the current density of 50 mA/cm2 (1.94 V for pristine LCO) and yields an ORR limiting current density of 5.78 mA/cm2 (4.01 mA/cm2 for pristine LCO), which offers a new strategy to simultaneously modulate the magnetic and electronic structures of LCO to further enhance its electrocatalytic activity.As a kind of bioactive sulfur species, biothiols (Cys, Hcy, and GSH) play an irreplaceable role in regulating the redox balance of life processes. Because of their similar chemical structures and properties, a sulfydryl group, and an amino group, it is an important challenge to distinguish two or more of them at the same time. Herein, a fluorescent sensor (NTPC) based on the coumarin structure was developed to discriminate Cys/Hcy and GSH simultaneously. The sensor has no fluorescence due to the d-PET effect but displays strong fluorescence after its reaction with biothiols. There are two potential reaction sites (nitrophenyl sulfide group and aldehyde group) in the structure of NTPC, resulting in different fluorescent signal changes after reacting with biothiols (green for Cys and Hcy and red for GSH). Under double-wavelength excitation, the sensor shows low background fluorescence, high selectivity, and low detection limits toward biothiols. Moreover, the sensor can be used to discriminate different biothiols (Cys/Hcy and GSH) in cells and zebra fish by different fluorescence signals with low toxicity and might provide a promising tool for studying the roles of different biothiols in various physiological and pathological processes.O-GlcNAc modification of the microtubule associated protein tau and α-synuclein can directly inhibit the formation of the associated amyloid fibers associated with major classes of neurodegenerative diseases. Protein Tyrosine Kinase inhibitor However, the mechanism(s) by which this posttranslational modification (PTM) inhibit amyloid aggregation are still murky. One hypothesis is that O-GlcNAc simply acts as a polyhydroxylated steric impediment to the formation of amyloid oligomers and fibers. Here, we begin to test this hypothesis by comparing the effects of O-GlcNAc to other similar monosaccharides-glucose, N-acetyl-galactosamine (GalNAc), or mannose-on α-synuclein amyloid formation. Interestingly, we find that this quite reasonable hypothesis is not entirely correct. More specifically, we used four types of biochemical and biophysical assays to discover that the different sugars display different effects on the inhibition of amyloid formation, despite only small differences between the structures of the monosaccharides. These results further support a more detailed investigation into the mechanism of amyloid inhibition by O-GlcNAc and has potential implications for the evolution of N-acetyl-glucosamine as the monosaccharide of choice for widespread intracellular glycosylation.Chiral differentiation is critical in diverse fields ranging from pharmaceutics to chiral synthesis. While surface-enhanced Raman scattering (SERS) offers molecule-specific vibrational information with high detection sensitivity, current strategies rely on indirect detection using additional selectors and cannot exploit SERS' key advantages for univocal and generic chiral differentiation. Here, we achieve direct, label-free SERS sensing of biologically important enantiomers by synergizing asymmetric nanoporous gold (NPG) nanoparticles with electrochemical-SERS to generate enantiospecific molecular fingerprints. Experimental and in silico studies reveal that chiral recognition is two pronged. First, the numerous surface atomic defects in NPG provide the necessary localized asymmetric environment to induce enantiospecific molecular adsorptions and interaction affinities. Concurrently, the applied potential drives and orients the enantiomers close to the NPG surface for maximal analyte-surface interactions. Notably, our strategy is versatile and can be readily extended to detect various enantiomers.