Martinezwerner7374

Z Iurium Wiki

Verze z 7. 11. 2024, 22:26, kterou vytvořil Martinezwerner7374 (diskuse | příspěvky) (Založena nová stránka s textem „Due to the combination of exotic features, this material offers great potential as a material platform for novel quantum effects.In modern oceans, eukaryot…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Due to the combination of exotic features, this material offers great potential as a material platform for novel quantum effects.In modern oceans, eukaryotic phytoplankton is dominated by lineages with red algal-derived plastids such as diatoms, dinoflagellates, and coccolithophores. Despite the ecological importance of these groups and many others representing a huge diversity of forms and lifestyles, we still lack a comprehensive understanding of their evolution and how they obtained their plastids. New hypotheses have emerged to explain the acquisition of red algal-derived plastids by serial endosymbiosis, but the chronology of these putative independent plastid acquisitions remains untested. Here, we establish a timeframe for the origin of red algal-derived plastids under scenarios of serial endosymbiosis, using Bayesian molecular clock analyses applied on a phylogenomic dataset with broad sampling of eukaryote diversity. We find that the hypotheses of serial endosymbiosis are chronologically possible, as the stem lineages of all red plastid-containing groups overlap in time. This period in the Meso- and Neoproterozoic Eras set the stage for the later expansion to dominance of red algal-derived primary production in the contemporary oceans, which profoundly altered the global geochemical and ecological conditions of the Earth.A high-quality, barley gene reference transcript dataset (BaRTv1.0), was used to quantify gene and transcript abundances from 22 RNA-seq experiments, covering 843 separate samples. Using the abundance data we developed a Barley Expression Database (EORNA*) to underpin a visualisation tool that displays comparative gene and transcript abundance data on demand as transcripts per million (TPM) across all samples and all the genes. EORNA provides gene and transcript models for all of the transcripts contained in BaRTV1.0, and these can be conveniently identified through either BaRT or HORVU gene names, or by direct BLAST of query sequences. Browsing the quantification data reveals cultivar, tissue and condition specific gene expression and shows changes in the proportions of individual transcripts that have arisen via alternative splicing. TPM values can be easily extracted to allow users to determine the statistical significance of observed transcript abundance variation among samples or perform meta analyses on multiple RNA-seq experiments. * Eòrna is the Scottish Gaelic word for Barley.We developed a rich dataset of Chest X-Ray (CXR) images to assist investigators in artificial intelligence. The data were collected using an eye-tracking system while a radiologist reviewed and reported on 1,083 CXR images. The dataset contains the following aligned data CXR image, transcribed radiology report text, radiologist's dictation audio and eye gaze coordinates data. We hope this dataset can contribute to various areas of research particularly towards explainable and multimodal deep learning/machine learning methods. Furthermore, investigators in disease classification and localization, automated radiology report generation, and human-machine interaction can benefit from these data. We report deep learning experiments that utilize the attention maps produced by the eye gaze dataset to show the potential utility of this dataset.We investigated whether serial measurements of circulating tumor DNA (ctDNA) and functional tumor volume (FTV) by magnetic resonance imaging (MRI) can be combined to improve prediction of pathologic complete response (pCR) and estimation of recurrence risk in early breast cancer patients treated with neoadjuvant chemotherapy (NAC). We examined correlations between ctDNA and FTV, evaluated the additive value of ctDNA to FTV-based predictors of pCR using area under the curve (AUC) analysis, and analyzed the impact of FTV and ctDNA on distant recurrence-free survival (DRFS) using Cox regressions. The levels of ctDNA (mean tumor molecules/mL plasma) were significantly correlated with FTV at all time points (p  less then  0.05). Median FTV in ctDNA-positive patients was significantly higher compared to those who were ctDNA-negative (p  less then  0.05). FTV and ctDNA trajectories in individual patients showed a general decrease during NAC. Exploratory analysis showed that adding ctDNA information early during treatment to FTV-based predictors resulted in numerical but not statistically significant improvements in performance for pCR prediction (e.g., AUC 0.59 vs. DiR chemical manufacturer 0.69, p = 0.25). In contrast, ctDNA-positivity after NAC provided significant additive value to FTV in identifying patients with increased risk of metastatic recurrence and death (p = 0.004). In this pilot study, we demonstrate that ctDNA and FTV were correlated measures of tumor burden. Our preliminary findings based on a limited cohort suggest that ctDNA at surgery improves FTV as a predictor of metastatic recurrence and death. Validation in larger studies is warranted.Naturally-occurring membranes in the xylem tissue of gymnosperm sapwood enable its use as an abundantly-available material to construct filters, with potential to facilitate access to safe drinking water in resource-constrained settings. However, the material's behavior as a filter is poorly understood, and challenges such as short shelf life have not been addressed. Here, we characterize the operational attributes of xylem filters and show that the material exhibits a highly non-linear dependence of flow resistance on thickness upon drying, and a tendency for self-blocking. We develop guidelines for the design and fabrication of xylem filters, demonstrate gravity-operated filters with shelf life >2 years, and show that the filters can provide >3 log removal of E. coli, MS-2 phage, and rotavirus from synthetic test waters and coliform bacteria from contaminated spring, tap, and ground waters. Through interviews and workshops in India, we use a user-centric approach to design a prototype filtration device with daily- to weekly-replaceable xylem filters, and uncover indicators of social acceptance of xylem as a natural water filter. Our work enhances the understanding of xylem as a filtration material, and opens opportunities for engineering a diverse range of low-cost, biodegradable xylem-based filtration products on a global scale.

Autoři článku: Martinezwerner7374 (Boykin Matthiesen)