Drejermcguire5615

Z Iurium Wiki

Verze z 7. 11. 2024, 22:25, kterou vytvořil Drejermcguire5615 (diskuse | příspěvky) (Založena nová stránka s textem „Lung cancer is a common malignant tumor around the world. Propofol has been found to play an anti-tumor role. Therefore, the purpose of this study is to cl…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Lung cancer is a common malignant tumor around the world. Propofol has been found to play an anti-tumor role. Therefore, the purpose of this study is to clarify the role and underlying molecular mechanisms of Propofol in non-small cell lung cancer (NSCLC).

The real-time quantitative polymerase chain reaction (RT-qPCR) assay was conducted to measure the expression levels of circular_RHOT1 (circ-RHOT1), microRNA (miR)-326, and Forkhead Box M1 (FOXM1) in tissues and cells. The proliferation of cell was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) and colony forming assays. The flow cytometry assay was used to evaluate cell apoptosis. The migration and invasion of NSCLC cells were determined by transwell assay. The protein expression level of FOXM1 was quantified by western blot assay. The association between miR-326 and circ-RHOT1 or FOXM1 was confirmed by dual-luciferase reporter assay.

Circ-RHOT1 was increased in NSCLC tissues and cells. Importantly, treatment with Propofol inhibited circ-RHOT1 expression in NSCLC cells. Propofol dose-dependently inhibited proliferation, migration and invasion while induced apoptosis of NSCLC cells, which was abolished by circ-RHOT1 overexpression, FOXM1 overexpression, or miR-326 silencing. MiR-326, interacted with FOXM1, was a target of circ-RHOT1 in NSCLC cells, which was confirmed by dual-luciferase reporter assay. Circ-RHOT1 regulated FOXM1 expression by sponging miR-326 in NSCLC cells. In addition, inhibition of circ-RHOT1 in combined with Propofol impeded tumorigenesis in vivo.

Propofol repressed proliferation, migration and invasion while induced apoptosis of NSCLC cells at least in part by regulation of circ-RHOT1/miR-326/FOXM1 axis in NSCLC cells.

Propofol repressed proliferation, migration and invasion while induced apoptosis of NSCLC cells at least in part by regulation of circ-RHOT1/miR-326/FOXM1 axis in NSCLC cells.

Non-alcoholic fatty liver disease (NAFLD) has a high incidence and mortality rate, and a rapid course of clinical development. Although miR-125b is closely associated with the pathogenesis of liver fibrosis and hepatocellular carcinoma, the role of miR-125b in NAFLD remains unknown.

The levels of TNF-α, IL-6, and IL-1β expression were examined via ELISA assays. Real-time PCR was used to determine the levels of miR-125b and tumor necrosis factor alpha-induced protein 3 (TNFAIP3) expression. The related molecular mechanisms were examined by performing luciferase reporter, western blot, and immunofluorescence assays. Structural changes in the livers of mice with NAFLD were observed via H&E staining.

The levels of TNF-α, IL-6, and IL-1β in NAFLD patients were greatly increased, and miR-125b expression was significantly up-regulated. The phosphorylation of IκBα and p65, and secretion of inflammatory factors were all markedly decreased by miR-125b silencing, but greatly increased by miR-125b overexpression. We also demonstrated that downregulation of TNFAIP3 in NAFLD was negatively correlated with miR-125b. Interestingly, the influence of miR-125b inhibitors on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-mediated inflammatory responses were greatly aggravated by co-treatment with TNFAIP siRNA; however, the opposite results were obtained after treatment with miR-125b mimics and TNFAIP plasmids. Furthermore, the HF-induced liver damage and inflammatory responses were greatly ameliorated by miR-125b inhibitors but further aggravated by co-treatment with TNFAIP3 siRNA.

MiR-125b promoted the NF-κB-mediated inflammatory response in NAFLD by directly targeting TNFAIP3, and that mechanism might be target for treating NAFLD.

MiR-125b promoted the NF-κB-mediated inflammatory response in NAFLD by directly targeting TNFAIP3, and that mechanism might be target for treating NAFLD.Gene mutations play important roles in tumour development. In this study, we identified a functional histone H2B mutation H2BL-T11C, causing an amino acid variation from Leu to Pro (L3P, H2BL-L3P). Cells overexpressing H2BL-L3P showed stronger proliferation, colony formation, tumourigenic abilities, and a different cell cycle distribution. Meanwhile, the c-Myc expression was elevated as evident by RNA-seq. We further revealed that an H2BK5ac-H2BK120ubi crosstalk which regulates gene transcription. Moreover, EdU staining demonstrated an important role of c-Myc in accelerating cell cycle progression through the G1/S checkpoint, while treatment with 10058-F4, an inhibitor of the c-Myc/MAX interaction, alleviated the abnormal cell proliferation and cell cycle distribution in vitro and partially inhibited tumour growth in vivo. selleck chemical The mutation of amino acid L3P is associated with tumour progression, suggesting patients carrying this SNP may have higher risk of tumour development.

Multiple sclerosis (MS) is one of the commonest neurologic disorders globally. LncRNA OIP5-AS1 has been found to be implicated in the etiology of MS. This study was to explore the roles and molecular mechanisms of OIP5-AS1 in the development of MS.

RT-qPCR assay was used to measure expressions of OIP5-AS1, miR-140-5p, IL-17A mRNA and RhoA mRNA. CD4

IL-17

cell proportion was determined by flow cytometry. IL-17A secretion was examined by ELISA assay. Cell inflammatory infiltration and demyelination were assessed by histological analyses. The interaction between miR-140-5p and OIP5-AS1 or RhoA 3'UTR was validated by bioinformatical analysis and luciferase reporter assay. Western blot assay was performed to detect protein expressions of ROCK2 and RhoA. An experimental autoimmune encephalomyelitis (EAE) models was established to explore the role of OIP5-AS1 in MS in vivo.

OIP5-AS1 expression was enhanced in MS patients. Also, elevated OIP5-AS1 level was observed during T-helper 17 (Th17) differentiation. Moreover, OIP5-AS1 promoted Th17 differentiation in vitro and contributed to the development of EAE in vivo. Mechanical explorations revealed that OIP5-AS1 targeted miR-140-5p to regulate Th17 differentiation. Moreover, RhoA was a target of miR-140-5p and miR-140-5p inhibited the activation of RhoA/ROCK2 signaling. Also, RhoA upregulation abrogated the inhibitory effects of miR-140-5p on Th17 differentiation.

OIP5-AS1 contributed to EAE development by targeting miR-140-5p/RhoA and activating RhoA/ROCK2 signaling pathway, shedding light on the roles and molecular mechanisms of OIP5-AS1 in the development of MS and providing some candidate targets for the diagnose and treatment of MS.

OIP5-AS1 contributed to EAE development by targeting miR-140-5p/RhoA and activating RhoA/ROCK2 signaling pathway, shedding light on the roles and molecular mechanisms of OIP5-AS1 in the development of MS and providing some candidate targets for the diagnose and treatment of MS.

Autoři článku: Drejermcguire5615 (Hoffmann Vest)