Hauserjacobsen9005
The negativity of both tests had a 94% (95% CI 87-100) negative predictive value. Comparison of the areas under the curve showed no differences in the diagnostic accuracy of IPT, SF-EMG, and their combinations.
IPT and SF-EMG have similar diagnostic accuracy in patients with OM presenting with ptosis. The negativity of both tests strongly suggests another diagnosis.
This study provides Class I evidence that both the IPT and SF-EMG accurately identify patients with OM.
This study provides Class I evidence that both the IPT and SF-EMG accurately identify patients with OM.
Myeloid-derived suppressor cells (MDSC) play a major role in the immunosuppressive melanoma microenvironment. They are generated under chronic inflammatory conditions characterized by the constant production of inflammatory cytokines, chemokines and growth factors, including IL-6. Recruitment of MDSC to the tumor is mediated by the interaction between chemokines and chemokine receptors, in particular C-C chemokine receptor (CCR)5. Here, we studied the mechanisms of CCR5 upregulation and increased immunosuppressive function of CCR5
MDSC.
The immortalized myeloid suppressor cell line MSC-2, primary immature myeloid cells and in vitro differentiated MDSC were used to determine factors and molecular mechanisms regulating CCR5 expression and immunosuppressive markers at the mRNA and protein levels. The relevance of the identified pathways was validated on the
transgenic mouse melanoma model, which was also used to target the identified pathways in vivo.
IL-6 upregulated the expression of CCR5 and arginaties or patient subsets to benefit from the anti-IL-6 treatment.
Our in vitro and ex vivo findings demonstrated that IL-6 induced CCR5 expression and a strong immunosuppressive activity of MDSC, highlighting this cytokine as a promising target for melanoma immunotherapy. However, IL-6 blocking therapy did not prove to be effective in RET transgenic melanoma-bearing mice but rather aggravated tumor progression. find more Further studies are needed to identify particular combination therapies, cancer entities or patient subsets to benefit from the anti-IL-6 treatment.
There are few therapeutic options available for patients with B-cell acute lymphoblastic leukemia (B-ALL) relapsing as CD19
either after chemotherapy or CD19-targeted immunotherapies. CD22-chimeric antigen receptor (CAR) T cells represent an attractive addition to CD19-CAR T cell therapy because they will target both CD22
CD19
B-ALL relapses and CD19
preleukemic cells. However, the immune escape mechanisms from CD22-CAR T cells, and the potential contribution of the epitope binding of the anti-CD22 single-chain variable fragment (scFv) remain understudied.
Here, we have developed and comprehensively characterized a novel CD22-CAR (clone hCD22.7) targeting a membrane-distal CD22 epitope and tested its cytotoxic effects against B-ALL cells both in in vitro and in vivo assays.
Conformational epitope mapping, cross-blocking, and molecular docking assays revealed that the hCD22.7 scFv is a high-affinity binding antibody which specifically binds to the ESTKDGKVP sequence, located in the Ig-like V-type high-affinity hCD22.7 scFv which targets a membrane-distal epitope of CD22. 4-1BB-based hCD22.7-CAR T cells efficiently eliminate clinically relevant B- CD22high and CD22low ALL primary samples in vitro and in vivo. Our study supports the clinical translation of this hCD22.7-CAR as either single or tandem CD22-CD19-CAR for both naive and anti-CD19-resistant patients with B-ALL.Brain tumors are the leading cause of cancer-related mortality in children and have distinct genomic and molecular features compared with adult glioma. However, the properties of immune cells in these tumors has been vastly understudied compared with their adult counterparts. We combined multiplex immunofluorescence immunohistochemistry coupled with machine learning and single-cell mass cytometry to evaluate T-cells infiltrating pediatric glial tumors. We show that low-grade tumors are characterized by greater T-cell density compared with high-grade glioma (HGG). However, even among low-grade tumors, T-cell infiltration can be highly variable and subtype-dependent, with greater T-cell density in pleomorphic xanthoastrocytoma and ganglioglioma. CD3+ T-cell infiltration correlates inversely with the expression of SOX2, an embryonal stem cell marker commonly expressed by glial tumors. T-cells within both HGG and low-grade glioma (LGG) exhibit phenotypic heterogeneity and tissue-resident memory T-cells consist of distinct subsets of CD103+ and TCF1+ cells that exhibit distinct spatial localization patterns. TCF1+ T-cells are located closer to the vessels while CD103+ resident T-cells reside within the tumor further away from the vasculature. Recurrent tumors are characterized by a decline in CD103+ tumor-infiltrating T-cells. BRAFV600E mutation is immunogenic in children with LGG and may serve as a target for immune therapy. These data provide several novel insights into the subtype-dependent and grade-dependent changes in immune architecture in pediatric gliomas and suggest that harnessing tumor-resident T-cells may be essential to improve immune control in glioma.To report a multi-institutional case series of patients with advanced microsatellite instability high (MSI-H) prostate adenocarcinoma identified with clinical cell-free DNA (cfDNA) next-generation sequencing (NGS) testing and treated with immune checkpoint inhibitors. Retrospective analysis of patients with metastatic castration-resistant prostate cancer (mCRPC) and MSI-H tumor detected by a commercially available cfDNA NGS assay Guardant360 (G360, Guardant Health) at eight different Academic Institutions in the USA, from September 2018 to April 2020. From a total of 14 MSI-H metastatic prostate cancer patients at participating centers, nine patients with mCRPC with 56% bone, 33% nodal, 11% liver and 11% soft-tissue metastases and a median PSA of 29.3 ng/dL, were treated with pembrolizumab after 2 lines of therapy for CRPC. The estimated median time on pembrolizumab was 9.9 (95% CI 1.0 to 18.8) months. Four patients (44%) achieved PSA50 after a median of 4 (3-12) weeks after treatment initiation including three patients with >99% PSA decline.