Myersenglish7944
As assessed by genome-wide expression analysis, CGRP induces the expression of specific genes linked to ossification, bone remodeling and adipogenesis. This suggests that CGRP receptor-dependent PPARγ signaling plays a central role in fracture healing.
This study demonstrates an essential role of αCGRP in orchestrating callus formation and identifies CGRP receptor agonism as a potential approach to stimulate bone regeneration. Moreover, as novel agents blocking CGRP or its receptor CRLR are currently introduced clinically for the treatment of migraine disorders, their potential negative impact on bone regeneration warrants clinical investigation.
This work was funded by grants from the Else-Kröner-Fresenius-Stiftung (EKFS), the Deutsche Forschungsgemeinschaft (DFG), and the Berlin Institute of Health (BIH).
This work was funded by grants from the Else-Kröner-Fresenius-Stiftung (EKFS), the Deutsche Forschungsgemeinschaft (DFG), and the Berlin Institute of Health (BIH).Coronavirus disease-2019 (COVID-19) is associated with severe inflammation in mainly the lung, and kidney. Reports suggest a beneficial effect of the use of heparin/low molecular weight heparin (LMWH) on mortality in COVID-19. In part, this beneficial effect could be explained by the anticoagulant properties of heparin/LMWH. Here, we summarise potential beneficial, non-anticoagulant mechanisms underlying treatment of COVID-19 patients with heparin/LMWH, which include (i) Inhibition of heparanase activity, responsible for endothelial leakage; (ii) Neutralisation of chemokines, and cytokines; (iii) Interference with leukocyte trafficking; (iv) Reducing viral cellular entry, and (v) Neutralisation of extracellular cytotoxic histones. Considering the multiple inflammatory and pathogenic mechanisms targeted by heparin/LMWH, it is warranted to conduct clinical studies that evaluate therapeutic doses of heparin/LMWH in COVID-19 patients. In addition, identification of specific heparin-derived sequences that are functional in targeting non-anticoagulant mechanisms may have even higher therapeutic potential for COVID-19 patients, and patients suffering from other inflammatory diseases.
Some COVID-19 cases test positive again for SARS-CoV-2 RNA following negative test results and discharge, raising questions about the meaning of virus detection. Better characterization of re-positive cases is urgently needed.
Clinical data were obtained through Guangdong's COVID-19 surveillance network. Neutralization antibody titre was determined using microneutralization assays. Potential infectivity of clinical samples was evaluated by cell inoculation. SARS-CoV-2 RNA was detected using three different RT-PCR kits and multiplex PCR with nanopore sequencing.
Among 619 discharged COVID-19 cases, 87 re-tested as SARS-CoV-2 positive in circumstances of social isolation. All re-positive cases had mild or moderate symptoms at initial diagnosis and were younger on average (median, 28). Re-positive cases (n=59) exhibited similar neutralization antibodies (NAbs) titre distributions to other COVID-19 cases (n=218) tested here. No infectious strain could be obtained by culture and no full-length viral genomes could be sequenced from re-positive cases.
Re-positive SARS-CoV-2 cases do not appear to be caused by active reinfection and were identified in ~14% of discharged cases. A robust NAb response and potential virus genome degradation were detected in almost all re-positive cases, suggesting a substantially lower transmission risk, especially through respiratory routes.
Re-positive SARS-CoV-2 cases do not appear to be caused by active reinfection and were identified in ~14% of discharged cases. A robust NAb response and potential virus genome degradation were detected in almost all re-positive cases, suggesting a substantially lower transmission risk, especially through respiratory routes.
Tumour Necrosis Factor (TNF) family members play important roles in mounting anti-tumour immune responses, and clinical trials targeting these molecules are ongoing. However, the expression patterns and clinical significance of TNF members in lung adenocarcinoma (LUAD) remain unrevealed. This study aimed to explore the gene expression profiles of TNF family members in LUAD and constructed a TNF family-based prognosis signature.
In total, 1300 LUAD cases from seven different cohorts were collected. Samples from The Cancer Genome Atlas (TCGA) were used as the training set, and the RNA data from five Gene Expression Omnibus (GEO) datasets and qPCR data from 102 samples were used for validation. Aticaprant purchase The immune profiles and potential immunotherapy response prediction value of the signature were also explored.
After univariate Cox proportional hazards regression and stepwise multivariable Cox analysis, a TNF family-based signature was constructed in the TCGA dataset that significantly stratified cases into high- and low-risk groups in terms of OS. This signature remained an independent prognostic factor in multivariate analyses. Moreover, the clinical significance of the signature was well validated in different clinical subgroups and independent validation cohorts. Further analysis revealed that signature high-risk patients were characterized by distinctive immune cell proportions and immune-suppressive states. Additionally, signature scores were positively related to multiple immunotherapy biomarkers.
This was the first TNF family-based model for predicting outcomes and immune landscapes for patients with LUAD. The capability of this signature for predicting immunotherapy response needs further validation.
This was the first TNF family-based model for predicting outcomes and immune landscapes for patients with LUAD. The capability of this signature for predicting immunotherapy response needs further validation.Nanomedicine has proven promising in preclinical studies. However, only few formulations have been successfully translated to clinical use. A thorough understanding of how nanoparticles interact with cells in vivo is essential to accelerate the clinical translation of nanomedicine. Intravital imaging is a crucial tool to reveal the mechanisms of nanoparticle transport in vivo, allowing for the development of new strategies for nanomaterial design. Here, we first review the most recent progress in using intravital imaging to answer fundamental questions about nanoparticle delivery in vivo. We then elaborate on how nanoparticles interact with different cell types and how such interactions determine the fate of nanoparticles in vivo. Lastly, we discuss ways in which the use of intravital imaging can be expanded in the future to facilitate the clinical translation of nanomedicine.