Oakleydejesus4231

Z Iurium Wiki

Verze z 7. 11. 2024, 19:37, kterou vytvořil Oakleydejesus4231 (diskuse | příspěvky) (Založena nová stránka s textem „Early-life telomere dynamics and growth were influenced by the interplays between laying and hatching order. Last-laid but first-hatched chicks were heavie…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Early-life telomere dynamics and growth were influenced by the interplays between laying and hatching order. Last-laid but first-hatched chicks were heavier but had shorter telomeres 5 days after hatching than their siblings, indicating rapid early growth with potential adverse consequences on telomere length. Synchronous chicks did not suffer any apparent cost of hatching synchronously. Impaired phenotypes only occurred when reversing the natural hatching order (i.e. developmental mismatch), suggesting that maternal investment in last-laid eggs might indeed counterbalance the initial handicap of last-hatched chicks. Our experimental study thus highlights that potential interplays between pre- and post-natal environments are likely to shape fitness prospects in the wild.The visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual system of the nocturnal reef fish family Holocentridae. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6-17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae (squirrelfish) having a slightly more developed photopic visual system than Myripristinae (soldierfish). Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of the multibank retina and its potential for dim-light colour vision.Animals need to acquire adequate and sufficient information to guide movements, yet information acquisition and processing are costly. Animals thus face a trade-off between gathering too little and too much information and, accordingly, actively adapt sensory input through motor control. Echolocating animals provide a unique opportunity to study the dynamics of adaptive sensing in naturally behaving animals, as every change in the outgoing echolocation signal directly affects information acquisition and the perception of the dynamic acoustic scene. Here, we investigated the flexibility with which bats dynamically adapt information acquisition depending on a task. We recorded the echolocation signals of wild-caught Western barbastelle bats (Barbastella barbastellus) while they were flying through an opening, drinking on the wing, landing on a wall and capturing prey. We show that the echolocation signal sequences during target approach differed in a task-dependent manner; bats started the target approach earlier and increased the information update rate more when the task became increasingly difficult, and bats also adjusted the dynamics of call duration shortening and peak frequency shifts accordingly. These task-specific differences existed from the onset of object approach, implying that bats plan their sensory-motor programme for object approach exclusively based on information received from search call echoes. We provide insight into how echolocating animals deal with the constraints they face when sequentially sampling the world through sound by adjusting acoustic information flow from slow to extremely fast in a highly dynamic manner. Our results further highlight the paramount importance of high behavioural flexibility for acquiring information.Monoterpenes are molecules with insecticide properties whose mechanism of action is, however, not completely elucidated. Furthermore, they seem to be able to modulate the monoaminergic system and several behavioural aspects in insects. In particular, tyramine (TA) and octopamine (OA) and their associated receptors orchestrate physiological processes such as feeding, locomotion and metabolism. Here, we show that monoterpenes not only act as biopesticides in Drosophila species but also can cause complex behavioural alterations that require functional type 1 tyramine receptors (TAR1s). Variations in metabolic traits as well as locomotory activity were evaluated in both Drosophila suzukii and Drosophila melanogaster after treatment with three monoterpenes. A TAR1-defective D. melanogaster strain (TAR1PL00408) was used to better understand the relationships between the receptor and monoterpene-related behavioural changes. Zn-C3 order Immunohistochemistry analysis revealed that, in the D. melanogaster brain, TAR1 appeared to be mainly expressed in the pars intercerebralis, lateral horn, olfactory and optic lobes and suboesophageal ganglion lobes. In comparison to wild-type D. melanogaster, the TAR1PL00408 flies showed a phenotype characterized by higher triglyceride levels and food intake as well as lower locomotory activity. The monoterpenes, tested at sublethal concentrations, were able to induce a downregulation of the TAR1 coding gene in both Drosophila species. Furthermore, monoterpenes also altered the behaviour in wild-type D. suzukii and D. melanogaster 24 h after continuous monoterpene exposure. Interestingly, they were ineffective in modifying the physiological performance of TAR1-defective flies. In conclusion, it appears that monoterpenes not only act as biopesticides for Drosophila but also can interfere with Drosophila behaviour and metabolism in a TAR1-dependent fashion.

Autoři článku: Oakleydejesus4231 (Blanchard Whitley)