Griffithbusch6039

Z Iurium Wiki

Verze z 7. 11. 2024, 18:01, kterou vytvořil Griffithbusch6039 (diskuse | příspěvky) (Založena nová stránka s textem „However, the emission intensity of samples doped with 1-10 mol% Cr3+ ions was relatively similar. A further increase in the Cr3+ ion concentration to 25 mo…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

However, the emission intensity of samples doped with 1-10 mol% Cr3+ ions was relatively similar. A further increase in the Cr3+ ion concentration to 25 mol% resulted in severe concentration quenching.The demand for biodegradable sustained release carriers with minimally invasive and less frequent administration properties for therapeutic proteins and peptides has increased over the years. The purpose of achieving sustained minimally invasive and site-specific delivery of macromolecules led to the investigation of a photo-responsive delivery system. This research explored a biodegradable prolamin, zein, modified with an azo dye (DHAB) to synthesize photo-responsive azoprolamin (AZP) nanospheres loaded with Immunoglobulin G (IgG). AZP nanospheres were incorporated in a hyaluronic acid (HA) hydrogel to develop a novel injectable photo-responsive nanosystem (HA-NSP) as a potential approach for the treatment of chorio-retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy. AZP nanospheres were prepared via coacervation technique, dispersed in HA hydrogel and characterised via infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Size and morphology were studied via scanning electron microscopy (SEM) and dynamic light scattering (DLS), UV spectroscopy for photo-responsiveness. Rheological properties and injectability were investigated, as well as cytotoxicity effect on HRPE cell lines. Particle size obtained was less then 200 nm and photo-responsiveness to UV = 365 nm by decreasing particle diameter to 94 nm was confirmed by DLS. Encapsulation efficiency of the optimised nanospheres was 85% and IgG was released over 32 days up to 60%. Injectability of HA-NSP was confirmed with maximum force 10 N required and shear-thinning behaviour observed in rheology studies. In vitro cell cytotoxicity effect of both NSPs and HA-NSP showed non-cytotoxicity with relative cell viability of ≥80%. A biocompatible, biodegradable injectable photo-responsive nanosystem for sustained release of macromolecular IgG was successfully developed.The use of intensive selection procedure in modern broiler chicken lines has led to the development of several skeletal disorders in broiler chickens. Therefore, current research is focused on methods to improve the bone quality in birds. In ovo technology, using nanoparticles with a high specificity to bones, is a potential approach. Selleck SR1 antagonist The present study aimed to evaluate the effect of in ovo inoculation (IOI) of calcium carbonate nanoparticles (CCN) on chicken embryo development, health status, bone characteristics, and on broiler production results and bone quality. After assessing in vitro cell viability, the IOI procedure was performed with an injection of 500 μg/mL CCN. The control group was not inoculated with CCN. Hatchability, weight, and selected bone and serum parameters were measured in embryos. Part of hatchlings were reared under standard conditions until 42 days, and production results, meat quality, and bone quality of broilers were determined. CCN did not show cytotoxicity to cells and chicken embryo and positively influenced bone parameters of the embryos and of broilers later (calcification) without negatively affecting the production results. Thus, the IOI of CCN could modify the molecular responses at the stage of embryogenesis, resulting in better mineralization, and could provide a sustained effect, thereby improving bone quality in adult birds.The differentiation ability of mesenchymal stem cells (MSCs) initially raised interest for treating musculoskeletal injuries in horses, but MSC paracrine activity has widened their scope for inflammatory and immune-mediated pathologies in both equine and human medicine. Furthermore, the similar etiopathogenesis of some diseases in both species has advanced the concept of "One Medicine, One Health". This article reviews the current knowledge on the use of MSCs for equine pathologies beyond the locomotor system, highlighting the value of the horse as translational model. Ophthalmologic and reproductive disorders are among the most studied for MSC application. Equine asthma, equine metabolic syndrome, and endotoxemia have been less explored but offer an interesting scenario for human translation. The use of MSCs in wounds also provides a potential model for humans because of the healing particularities in both species. High-burden equine-specific pathologies such as laminitis have been suggested to benefit from MSC-therapy, and MSC application in challenging disorders such as neurologic conditions has been proposed. The available data are preliminary, however, and require further development to translate results into the clinic. Nevertheless, current evidence indicates a significant potential of equine MSCs to enlarge their range of application, with particular interest in pathologies analogous to human conditions.In this paper, a novel signal processing algorithm for mitigating the radar blind speed problem of moving target indication (MTI) for frequency modulated continuous wave (FMCW) multi-target tracking radars is proposed. A two-phase staggered pulse repetition interval (PRI) solution is introduced to the FMCW radar system. It is implemented as a time-varying MTI filter using twice the hardware resources as compared to a uniform PRI MTI filter. The two-phase staggered PRI FMCW waveform is still periodic with a little more than twice the period of the uniform PRI radar. We also propose a slow time signal integration scheme for the radar detector using the post-fast Fourier transformation Doppler tracking loop. This scheme introduces 4.77 dB of extra signal processing gain to the signal before the radar detector compared with the original uniform PRI FMCW radar. The validation of the algorithm is done on the field programmable logic array in the loop test bed, which accurately models and emulates the target movement, line of sight propagation and radar signal processing. A simulation run of tracking 16 s of the target movement near or at the radar blind speed shows that the total degradation from the raw post-fast Fourier transformation received signal to noise ratio is about 2 dB. With a 20 dB post-processing signal to noise ratio of the proposed algorithm for the moving target at around a 20 km range and with about a -3.5 dB m2 radar cross section at a 1.5 GHz carrier frequency, the tracking errors of the two-dimensional angles with a 4×4 digital phased array are less than 0.2 degree. The range tracking error is about 28 m.

Autoři článku: Griffithbusch6039 (Kessler Schwartz)