Ohlsencho4112

Z Iurium Wiki

Verze z 7. 11. 2024, 17:21, kterou vytvořil Ohlsencho4112 (diskuse | příspěvky) (Založena nová stránka s textem „The novel SARS-CoV-2 uses the ACE2 (Angiotensin-Converting Enzyme 2) receptor as an entry point. Insights on S protein receptor-binding domain (RBD) intera…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The novel SARS-CoV-2 uses the ACE2 (Angiotensin-Converting Enzyme 2) receptor as an entry point. Insights on S protein receptor-binding domain (RBD) interaction with ACE2 receptor and drug repurposing has accelerated drug discovery for the novel SARS-CoV-2 infection. Finding small molecule binding sites in the S protein and ACE2 interface is crucial in the search of effective drugs to prevent viral entry. In this study, we employed molecular dynamics simulations in mixed solvents together with virtual screening to identify small molecules that could be potential inhibitors of S protein ACE2 interaction. Observation of organic probe molecule localization during the simulations revealed multiple sites at the S protein surface related to a small molecule, antibody, and ACE2 binding. In addition, a novel conformation of the S protein was discovered that could be stabilized by small molecules to inhibit attachment to ACE2. The most promising binding site on the RBD-ACE2 interface was targeted with virtual screening and top-ranked compounds (DB08248, DB02651, DB03714, and DB14826) are suggested for experimental testing. The protocol described here offers an extremely fast method for characterizing key proteins of a novel pathogen and for the identification of compounds that could inhibit or accelerate the spreading of the disease.Set systems are used to model data that naturally arises in many contexts social networks have communities, musicians have genres, and patients have symptoms. Visualizations that accurately reflect the information in the underlying set system make it possible to identify the set elements, the sets themselves, and the relationships between the sets. In static contexts, such as print media or infographics, it is necessary to capture this information without the help of interactions. With this in mind, we consider three different systems for medium-sized set data, LineSets, EulerView, and MetroSets, and report the results of a controlled human-subjects experiment comparing their effectiveness. Specifically, we evaluate the performance, in terms of time and error, on tasks that cover the spectrum of static set-based tasks. We also collect and analyze qualitative data about the three different visualization systems. Our results include statistically significant differences, suggesting that MetroSets performs and scales better.In this paper, we propose a novel system named Disp R-CNN for 3D object detection from stereo images. Many recent works solve this problem by first recovering point clouds with disparity estimation and then apply a 3D detector. The disparity map is computed for the entire image, which is costly and fails to leverage category-specific prior. In contrast, we design an instance disparity estimation network (iDispNet) that predicts disparity only for pixels on objects of interest and learns a category-specific shape prior for more accurate disparity estimation. To address the challenge from scarcity of disparity annotation in training, we propose to use a statistical shape model to generate dense disparity pseudo-ground-truth without the need of LiDAR point clouds, which makes our system more widely applicable. Experiments on the KITTI dataset show that, when LiDAR ground-truth is not used at training time, Disp R-CNN outperforms previous state-of-the-art methods based on stereo input by 20% in terms of average precision for all categories. Curzerene The code and pseudo-ground-truth data are available at the project page https//github.com/zju3dv/disprcnn.We propose a method to learn 3D deformable object categories from raw single-view images, without external supervision. The method is based on an autoencoder that factors each input image into depth, albedo, viewpoint and illumination. In order to disentangle these components without supervision, we use the fact that many object categories have, at least approximately, a symmetric structure. We show that reasoning about illumination allows us to exploit the underlying object symmetry even if the appearance is not symmetric due to shading. Furthermore, we model objects that are probably, but not certainly, symmetric by predicting a symmetry probability map, learned end-to-end with the other components of the model. Our experiments show that this method can recover very accurately the 3D shape of human faces, cat faces and cars from single-view images, without any supervision or a prior shape model. On benchmarks, we demonstrate superior accuracy compared to another method that uses supervision at the level of 2D image correspondences.Conventional 3D convolutional neural networks (CNNs) are computationally expensive, memory intensive, prone to overfitting, and most importantly, there is a need to improve their feature learning capabilities. To address these issues, we propose spatio-temporal short term Fourier transform (STFT) blocks, a new class of convolutional blocks that can serve as an alternative to the 3D convolutional layer and its variants in 3D CNNs. An STFT block consists of non-trainable convolution layers that capture spatially and/or temporally local Fourier information using a STFT kernel at multiple low frequency points, followed by a set of trainable linear weights for learning channel correlations. The STFT blocks significantly reduce the space-time complexity in 3D CNNs. In general, they use 3.5 to 4.5 times less parameters and 1.5 to 1.8 times less computational costs when compared to the state-of-the-art methods. Furthermore, their feature learning capabilities are significantly better than the conventional 3D convolutional layer and its variants. Our extensive evaluation on seven action recognition datasets, including Something-something v1 and v2, Jester, Diving-48, Kinetics-400, UCF 101, and HMDB 51, demonstrate that STFT blocks based 3D CNNs achieve on par or even better performance compared to the state-of-the-art methods.Spatially-adaptive normalization (SPADE) is remarkably successful recently in conditional semantic image synthesis, which modulates the normalized activation with spatially-varying transformations learned from semantic layouts, to prevent the semantic information from being washed away. Despite its impressive performance, a more thorough understanding of the advantages inside the box is still highly demanded to help reduce the significant computation and parameter overhead introduced by this novel structure. In this paper, from a return-on-investment point of view, we conduct an in-depth analysis of the effectiveness of this spatially-adaptive normalization and observe that its modulation parameters benefit more from semantic-awareness rather than spatial-adaptiveness, especially for high-resolution input masks. Inspired by this observation, we propose class-adaptive normalization (CLADE), a lightweight but equally-effective variant that is only adaptive to semantic class. In order to further improve spatial-adaptiveness, we introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE and propose a truly spatially-adaptive variant of CLADE, namely CLADE-ICPE.

Autoři článku: Ohlsencho4112 (Craft Blankenship)