Alstrupfriedrichsen4775
Breast cancer (BC) continues to plague millions of people worldwide. MicroRNAs have been observed to be closely associated with many cancers and may serve as promising biomarkers for the diagnosis of BC. BC tissue samples were collected from 26 patients, and qRT-PCR and western blotting were performed to evaluate the levels of miR-543 and VCAN. The action of miR-543 and VCAN was determined using CCK-8, BrdU, wound healing, and transwell invasion assays. Luciferase and RNA pull-down assays were used to assess whether miR-543 bound to VCAN. We found that miR-543 inhibited BC cell viability, proliferation, migration, and invasion by repressing the expression of VCAN. VCAN was upregulated in BC tissues and exerted beneficial effects on the development process of BC. Our results highlighted that the miR-543/VCAN axis is a promising diagnostic and prognostic biomarker in clinical applications.
Inflammation contributes to skeletal muscle atrophy via protein degradation induced by p38 mitogen-activated protein kinase (MAPK) phosphorylation. Meanwhile, pulsed ultrasound irradiation provides the mechanical stimulation to the target tissue, and has been reported to show anti-inflammatory effects. CRT0066101 cell line This study investigated the preventive effects of pulsed ultrasound irradiation on muscle atrophy induced by lipopolysaccharide (LPS) in C2C12 myotubes.
C2C12 myotubes were used in this research. The pulsed ultrasound (a frequency of 3MHz, duty cycle of 20%, intensity of 0.5W/cm
) was irradiated to myotube before LPS administration.
The LPS increased phosphorylation of p38 MAPK and decreased the myofibril and myosin heavy chain protein (P<0.05), followed by atrophy in C2C12 myotubes. The pulsed ultrasound irradiation attenuated p38 MAPK phosphorylation and myotube atrophy induced by LPS (P<0.05).
Pulsed ultrasound irradiation has the preventive effects on inflammation-induced muscle atrophy through inhibiting phosphorylation of p38 MAPK.
Pulsed ultrasound irradiation has the preventive effects on inflammation-induced muscle atrophy through inhibiting phosphorylation of p38 MAPK.GITRL/GITR signaling pathway plays an important role in allergy, inflammation, transplantation and autoimmunity. However, its role in asthma remains unclear. Thus, the present study aimed to investigate changes in this pathway and observe the therapeutic effect of its blocking on asthma. By using house dust mite-induced asthma model, changes of GITRL/GITR and its downstream molecules MAPKs (e.g., p38 MAPK, JNK and Erk) and NF-κB were observed. After that, GITRL in lung of mice was knocked down by recombinant adeno-associated virus to observe the impact on its downstream molecules and assess the therapeutic effect on asthma. These results showed that GITRL/GITR and its downstream molecules MAPKs/NF-κB were activated in asthmatic mice. This activation was suppressed after GITRL knockdown, and allergic airway inflammation and airway hyperresponsiveness were alleviated. These results demonstrate that GITRL/GITR-MAPKs/NF-κB signaling pathway participates in the pathogenesis of asthma. Blockade of GITRL/GITR signaling pathway exhibits protective effects in a mouse model of house dust mite-induced allergic asthma.Although high level of circulating C-reactive protein (pCRP) is considered as a biomarker for disease activity, the significance of CRP in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) has not been clarified. We once reported in AAV, pentameric CRP (pCRP) could dissociate into monomeric CRP (mCRP) and activate platelets. Recent studies have demonstrated that the activated platelets can release mitochondrial DNA (mtDNA). The purpose of this study was to further study the relationship between mCRP and platelets in AAV. We found the plasma level of mCRP in AAV patients was significantly higher than that of normal control and positively correlated with the proportion of mCRP-positive platelets. Platelets isolated from one normal donor could be activated by plasma from 5 AAV patients and this effect could be attenuated when mCRP had been removed. Only 0.1 μg/mL of recombinant mCRP was needed for inducing platelets to release mtDNA via interaction with lipid raft and through p38 MAPK/NF-κB pathway. The mCRP binding on platelets depended on the C-terminal octapeptide (aa 199-206). The released mtDNA did not induce respiratory burst alone, but enhanced the ANCA-induced neutrophils respiratory burst after binding Toll-like receptor 9 (TLR9). The mtDNA released by mCRP-activated platelets also enhanced thrombin generation of plasma. In conclusion, our data demonstrate that mCRP can bind platelets via interaction with lipid raft and induce the release of mtDNA. The released mtDNA can enhance the pathogenicity of ANCA and promote activation of coagulation system in AAV.Synergistic interplay of immune endocrine interaction is prerequisite for an effective maternal fetal tolerance. Pre-term birth (PTB) may be a consequence of altered immune-endocrine crosstalk during third trimester resulting in early breakdown of this tolerance. Myeloid derived suppressor cells (MDSCs), a heterogenous population of immature immune cells are increased in pregnant women and healthy newborns, but their role in PTB still remains obscure. We now report that granulocytic MDSCs (G-MDSCs) is decreased in women delivering prematurely, suggesting their potential role in maintaining maternal fetal tolerance. Interestingly, in contrast statistically significant increase in MDSCs and monocytic MDSCs (M-MDSCs) along with positive correlation with cord serum estradiol (E2), and overexpressed ER-α in placental tissue suggested E2 mediated accumulation of M-MDSCs in PTB babies. MDSCs mediated immune suppression is accompanied with subsequent decline in total T cells and its subtypes Th and Tc in PTB babies, which signifies their potential contribution towards the impaired immune system of PTB babies.
Women who smoke during pregnancy have a reduced risk of preeclampsia. The mechanism of this association is poorly understood. Preeclampsia is an anti-angiogenic and inflammatory state. Transforming growth factor beta 1 (TGF-β1) is a multi-functional anti-inflammatory cytokine that activates membrane bound endoglin on endothelial cells causing a myriad of vascular actions including vasorelaxation. The objective of the study was to determine serum levels of cytokines, angiogenic factors, placental growth factor (PlGF), TGF-β-1 and anti-angiogenic factors, soluble endoglin (sEng) and soluble vascular endothelial growth factor 1 (sVEGFR1) in smoking and non-smoking pregnant women.
Using enzyme-linked immunosorbent and multiplex assays we prospectively analyzed serum levels of PIGF, TGF-β1, sEng, sVEGFR1 and cytokines in normotensive pregnant smokers and non-smokers. Exclusion criteria included maternal hypertension, autoimmune disorders, rupture of membranes, evidence of labor and drug use.
There were 59 women in the smoking and 66 in the non-smoking group.