Lehmannhaas3493
Significant amounts of water are used to extinguish fires, and finding evidence of ignitable liquid residue can be challenging for investigators. Hydrophobic pads have been designed to collect oil-based products from the surface of water and preferentially absorb non-polar compounds while repelling water. In this study hydrophobic pads are used to collect various classifications of ignitable liquids from the surface of water for analysis using passive headspace concentration and GC/MS analysis. Hydrophobic pads were found to be effective in collecting ignitable liquids containing hydrocarbons greater than C8, classifications medium and heavy petroleum distillates, from 10 microliters of ignitable liquids added to the surface of 100 milliliters of water. Gasoline and 50% evaporated gasoline were also recovered using the hydrophobic pads with 25 microliters of sample.Chronic pain affects 50% of adults with sickle cell disease (SCD). Although inflammation is thought to contribute to the pathogenesis of chronic pain, no studies have examined the differences in circulating cytokines between patients with SCD with and without chronic pain. We performed an observational cohort study using blood and urine samples from adults with SCD with and without chronic pain at their usual state of health. We tested the hypothesis that, compared to those without chronic pain, those with chronic pain would have significantly higher baseline circulating proinflammatory cytokines. A total of 61 adults with SCD, 40 with chronic pain and 21 without chronic pain were tested. When SCD patients with chronic pain were compared to those without chronic pain, no significant differences in cytokine levels were noted. The variables most associated with the diagnosis of chronic pain in this population were opioid dose and subject age.Bacterial glycosyltransferases are potential targets for the development of novel antibiotics and anti-virulence agents. We report a novel inhibitor design for the retaining α-1,4-galactosyltransferase LgtC from Neisseria meningitidis. Our design is based on the installation of an electrophilic warhead on the LgtC acceptor substrate and targeted at a non-catalytic cysteine residue in the LgtC active site. We have successfully synthesised two prototype inhibitors in four steps from lactulose. The key step in our synthesis is a Heyns rearrangement, during which we observed the formation of a hitherto unknown side product. While both lactosamine derivatives behaved as moderate inhibitors of LgtC, they also retained residual substrate activity. These results suggest that in contrast to our original design, these inhibitors do not act via a covalent mode of action, but are most likely non-covalent inhibitors.Biofouling poses considerable technical challenges to agricultural irrigation systems. Controlling biofouling with strong chemical biocides is not only expensive and sometimes ineffective, but also contributes to environmental pollution. This study investigated the application of nanobubbles (NBs) on minimizing biofouling in agricultural irrigation water pipelines. Treatment performances were assessed using low concentration bubbles (LCB) and high concentration bubbles (HCB) together with a negative control (CK no-NBs). 16 s rRNA gene sequencing and X-ray diffraction were used to characterize the microbial community and mineral compositions of biofilms in water emitters. Results demonstrated that NBs effectively mitigated biofouling through reducing fixed-biomass by 31.3-52.1%. A significantly different microbial composition was found in the biofilm community with reduced biodiversity. Molecular ecological network analysis revealed that NBs were detrimental to the mutualistic interactions among microbial species - destabilizing the network complexity and size, which was expressed as decreasing in extracellular polymers and biofilm biomass. Furthermore, NBs significantly decreased the deposition of carbonate, silicate, phosphate, and quartz on the pipe surfaces, leading to reductions of total content of minerals in biofilms. Therefore, this study demonstrated that NBs treatment could be an effective, and eco-friendly solution for biofouling control in agricultural water distribution systems.Acidic failure is relatively common in anaerobic digesters that receive readily biodegradable food wastes at high loading. Under low pH conditions, the activity of methanogenic biomass decreases resulting in complete failure of the digestion process. In this experimental study, we demonstrated that one of the causes for the digester failure under low pH conditions is due to accelerated decay of methanogenic biomass. When enriched acetate degrading methanogens were exposed to a low pH environment (pH = 5.1 with phosphoric acid) in a batch experiment without external substrate, the specific decay rate was observed to increase as much as 10 times of that at pH 7.0. The specific decay rate for formate degrader was also found to increase under low pH conditions whilst the fermentative microorganisms in the cultures appeared to be tolerant to low pH conditions. A Propidium Mono-Azide-quantitative Polymerase Chain Reaction (PMA-qPCR) analysis revealed that the archaeal biomass dominated by methanogens dropped by 71-79% from the initial concentration after 6 days of the acidic batch experiment whilst the bacterial biomass dominating acidogens decreased by only 25%. The decrease in the number of living cells in the batch experiments at different pH was monitored with time to determine a correlation between decay rate and incubation pH.Popularity of smartphones has dramatically increased in the past years, accompanied by increased concerns regarding potentially adverse effects on physical and mental health. Addictive behavior associated with excessive smartphone use, frequently referred to as "smartphone addiction" (SPA), has attracted increased scientific interest. However the neural correlates of SPA are unknown. We used functional magnetic resonance imaging at 3T to investigate the neural correlates of cue reactivity (CR) in individuals with SPA (n = 21) compared to controls (n = 21). SPA was assessed using the Smartphone Addiction Inventory (SPAI), and neural activity was measured by a modified CR task. Contrasts of images of smartphones vs. neutral stimuli and stimuli including active vs. read more inactive smartphones (p less then 0.001, uncorrected for height, followed by correction for spatial extent) were analyzed. In the first contrast, group differences in medial prefrontal (MPFC), occipital, temporal, and anterior cingulate (ACC) cortices, in temporoparietal regions, and cerebellum were found.