Connoregelund3030

Z Iurium Wiki

Verze z 7. 11. 2024, 15:15, kterou vytvořil Connoregelund3030 (diskuse | příspěvky) (Založena nová stránka s textem „The TC degradation was also found to be pH-dependent; when increasing the pH value up to 10, 94% degradation was achieved at 10 mg/L within 60 min of solar…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The TC degradation was also found to be pH-dependent; when increasing the pH value up to 10, 94% degradation was achieved at 10 mg/L within 60 min of solar irradiation. The analysis was also performed over BiOI, which proves that Fe has a profound effect on TC degradation as Fe(II) tends to trigger oxidation-reduction by utilizing the chelate formation tendency of TC. Therefore, the prepared Fe-BiOI-In has the potential ability to degrade pharmaceutical compounds, especially, TC from wastewater.This study aims to predict the productivity of an open-hole horizontal gas well (OHHGW) in a gas reservoir with closed bottom and top boundaries (GRCBTBs). First, according to the theory of mirror imaging, an OHHGW in GRCBTBs is transformed into an infinite well array in infinite formation. Second, based on conformal transformation principle, the infinite well array is transformed into two production and two injection wells in the complex plane. Finally, according to the superposition principle of potential, a new productivity prediction method, which is suitable for the horizontal well in GRCBTBs, was developed. The field measured data of Jingbian gas field of Ordos Basin demonstrate the ability of the method to accurately predict the productivity of the OHHGW in GRCBTBs, and the prediction relative error of absolute open flow of well Longping 1 is only 1.03%, that is to say that the method proposed in this study has a certain guiding significance for the development of horizontal wells in GRCBTBs.A CaO/clinoptilolite green nanocomposite (CaO/Clino) was synthesized by a green modification technique using calcium nitrate and green tea extract. The CaO/Clino nanocomposite promises a total basicity of 4.82 mmol OH/g, surface area of 252.4 m2/g, and ion exchange capacity of 134.3 mequiv/100 g, which qualifies the product as an effective catalyst in the transesterification of castor oil. The transesterification performance of the CaO/Clino catalyst was addressed statistically based on the response surface methodology and central composite rotatable design, considering the essential experimental parameters. Based on the interaction effect between the studied variables, the CaO/Clino catalyst can achieve an experimental biodiesel yield of 93.8% after 2.5 h at 120 °C with 3.5 wt % catalyst loading and 151 ethanol/castor oil molar ratio. The optimization function of the design suggested enhancement in the performance of the CaO/Clino catalyst to achieve a yield of 95.4% if the test time interval increased to 2.65 h and the ethanol content increased to 161 as a molar ratio to castor oil. The produced biodiesel over CaO/ClinO has acceptable technical qualifications according to the international requirements (EN 14214 and ASTM D-6751). The synthetic green CaO/Clino nanocomposite has better recyclability as a heterogeneous catalyst and higher activity than some investigated catalysts in literature.While heterogeneous enzyme reactions play an essential role in both nature and green industries, computational predictions of their catalytic properties remain scarce. Recent experimental work demonstrated the applicability of the Sabatier principle for heterogeneous biocatalysis. This provides a simple relationship between binding strength and the catalytic rate and potentially opens a new way for inexpensive computational determination of kinetic parameters. However, broader implementation of this approach will require fast and reliable prediction of binding free energies of complex two-phase systems, and computational procedures for this are still elusive. Here, we propose a new framework for the assessment of the binding strengths of multidomain proteins, in general, and interfacial enzymes, in particular, based on an extended linear interaction energy (LIE) method. This two-domain LIE (2D-LIE) approach was successfully applied to predict binding and activation free energies of a diverse set of cellulases and resulted in robust models with high accuracy. Overall, our method provides a fast computational screening tool for cellulases that have not been experimentally characterized, and we posit that it may also be applicable to other heterogeneously acting biocatalysts.In general, lignin exhibits unpredictable and nonuniform thermal properties due to the structural variations caused by the extraction processes. Therefore, a systematic understanding of the correlation between the extraction conditions, structural characteristics, and properties is indispensable for the commercial utilization of lignin. In this study, the effect of extraction conditions on the structural characteristics of ethanol organosolv lignin (EOL) was investigated by response surface methodology. The structural characteristics of EOL (molecular weight, hydroxyl content, and intramolecular coupling structure) were significantly affected by the extraction conditions (temperature, sulfuric acid concentration, and ethanol concentration). In addition, the correlation between the structural characteristics and thermal properties of the extracted EOLs was estimated. The relevant correlations between the structural characteristics and thermal properties were determined. In particular, EOLs that had a low molecular weight, high phenolic hydroxyl content, and low aryl-ether linkage content exhibited prominent thermal properties in terms of their initial decomposition rate and a high glass transition temperature, Tg. Correspondingly, EOL-PLA blends prepared using three EOL types exhibited improved thermal properties (starting point of thermal decomposition and maximum decomposition temperature) compared to neat PLA and had thermal decomposition behaviors coincident with the thermal properties of the constituent EOLs.Copper manganese oxides (CMO) with CuMn2O4 composition are well-known catalysts, which are widely used for the oxidative removal of dangerous chemicals, e.g., enhancing the CO to CO2 conversion. Their catalytic activity is the highest, close to those of the pre-crystalline and amorphous states. Here we show an easy way to prepare a stable CMO material at the borderline of the amorphous and crystalline state (BAC-CMO) at low temperatures ( less then 100 °C) followed annealing at 300 °C and point out its excellent catalytic activity in CO oxidation reactions. ATG-017 mw We demonstrate that the temperature-controlled decomposition of [Cu(NH3)4](MnO4)2 in CHCl3 and CCl4 at 61 and 77 °C, respectively, gives rise to the formation of amorphous CMO and NH4NO3, which greatly influences the composition as well as the Cu valence state of the annealed CMOs. Washing with water and annealing at 300 °C result in a BAC-CMO material, whereas the direct annealing of the as-prepared product at 300 °C gives rise to crystalline CuMn2O4 (sCMO, 15-40 nm) and ((Cu,Mn)2O3, bCMO, 35-40 nm) mixture.

Autoři článku: Connoregelund3030 (Eskesen Fletcher)