Melendezhong7817
As the rapid increase of the worldwide population, recovering valuable resources from wastewater have attracted more and more attention by governments and academia. Electrochemical technologies have been extensively investigated over the past three decades to purify wastewater. However, the application of these technologies for resource recovery from wastewater has just attracted limited attention. In this review, the recent (2010-2020) electrochemical technologies for resource recovery from wastewater are summarized and discussed for the first time. Fundamentals of typical electrochemical technologies are firstly summarized and analyzed, followed by the specific examples of electrochemical resource recovery technologies for different purposes. Based on the fundamentals of electrochemical reactions and without the addition of chemical agents, metallic ions, nutrients, sulfur, hydrogen and chemical compounds can be effectively recovered by means of electrochemical reduction, electrochemical induced precipitation, electrochemical stripping, electrochemical oxidation and membrane-based electrochemical processes, etc. Pros and cons of each electrochemical technology in practical applications are discussed and analyzed. Single-step electrochemical process seems ineffectively to recover valuable resources from the wastewater with complicated constituents. Multiple-step processes or integrated with biological and membrane-based technologies are essential to improve the performance and purity of products. Consequently, this review attempts to offer in-depth insights into the developments of next-generation of electrochemical technologies to minimize energy consumption, boost recovery efficiency and realize the commercial application.Mitochondria are autonomous and dynamic cellular organelles orchestrating a diverse range of cellular activities. Numerous cell-signaling pathways target these organelles and Ca2+ is one of the most significant. Mitochondria are able to rapidly and transiently take up Ca2+, thanks to the mitochondrial Ca2+ uniporter complex, as well as to extrude it through the Na+/Ca2+ and H+/Ca2+ exchangers. The transient accumulation of Ca2+ in the mitochondrial matrix impacts on mitochondrial functions and cell pathophysiology. Here we summarize the role of mitochondrial Ca2+ signaling in both physiological (yang) and pathological (yin) processes and the methods that can be used to investigate mitochondrial Ca2+ homeostasis. As an example of the pivotal role of mitochondria in pathology, we described the state of the art of mitochondrial Ca2+ alterations in different pathological conditions, with a special focus on Alzheimer's disease.Gain-of-function RyR1-p.R163C mutation in ryanodine receptors type 1 (RyR1) deregulates Ca2+ signaling and mitochondrial function in skeletal muscle and causes malignant hyperthermia in humans and mice under triggering conditions. Epigenetics inhibitor We investigated whether T lymphocytes from heterozygous RyR1-p.R163C knock-in mutant mice (HET T cells) display measurable aberrations in resting cytosolic Ca2+ concentration ([Ca2+]i), Ca2+ release from the store, store-operated Ca2+ entry (SOCE), and mitochondrial inner membrane potential (ΔΨm) compared with T lymphocytes from wild-type mice (WT T cells). We explored whether these variables can be used to distinguish between T cells with normal and altered RyR1 genotype. HET and WT T cells were isolated from spleen and lymph nodes and activated in vitro using phytohemagglutinin P. [Ca2+]i and ΔΨm dynamics were examined using Fura 2 and tetramethylrhodamine methyl ester fluorescent dyes, respectively. Activated HET T cells displayed elevated resting [Ca2+]i, diminished responses to its carrier. Our data link the RyR1-p.R163C mutation, which causes inherited skeletal muscle diseases, to deregulation of Ca2+ signaling and mitochondrial function in immune T cells and establish proof-of-principle for in vitro T cell-based diagnostic assay for hereditary RyR1 hyperfunction.
No standard treatment option is available for patients with unresectable malignant pleural mesothelioma (MPM) progressing after upfront chemotherapy. We aimed to explore the role of focal radiotherapy (FRT) as a treatment modality for oligo-progressive MPM.
In this retrospective study, consecutive patients pretreated with ≥1 lines of chemotherapy were included. Oligo-progressive MPM was defined as an unresectable disease with radiological progression at ≤3 sites according to a chest-abdominal contrast-enhanced computed tomography. Patients were treated with either stereotactic body radiotherapy (SBRT, ≥5 Gy per fraction) or hypo-fractionated radiotherapy (hypoRT, <5 Gy per fraction). Time to further systemic therapy (TFST) and local control (LC) after FRT were the primary endpoints. Biologically effective dose (BED) was calculated using three different alpha/beta models (1.5 Gy, 3 Gy and 10 Gy).
From April 2006 to March 2019, 37 patients were treated on 43 pleural lesions; 16/37 (43 %) had undergone city. FRT was more effective when performed at progression after one line of systemic therapy. Our results suggest a radio-resistant behavior of MPM.
Hypertensive disorders of pregnancy(HDP) is a complex and challenging group of pregnancy complications that is one of the leading causes of maternal and fetal death worldwide. Recent studies have shown that the single nucleotide polymorphism(SNP) may play a role in the pathogenesis of HDP. This study aimed to investigate the association of MiR-146a rs2910164 and insulin receptor(INSR) rs2059806 SNPs with HDP and their associated complications in the Han population of Northeast China.
A total of 240 HDP patients and 380 healthy controls were selected for genotype determination. For the most special and high incidence of HDP, we also studied the SNPs in association with pre-eclampsia(PE) patients. In addition, HDP complicated with gestational diabetes mellitus(GDM) patients was further analyzed to identify the association between SNPs and HDP-related complications. Multivariate logical regression analysis combined with 10, 000 permutation test corrections was used to analyze the association of MiR-146a and INSR SNPs with HDP.