Donovankyed1528
Glioblastoma multiforme (GBM) is the most malignant brain tumor. Hypoxic condition is a predominant feature of the GBM contributing to tumor growth and resistance to conventional therapies. Hence, the identification of drugs able to impair GBM malignancy and aggressiveness is considered of great clinical relevance. Previously, we demonstrated that the activation of M2 muscarinic receptors, through the agonist arecaidine propargyl ester (Ape), arrests cell proliferation in GBM cancer stem cells (GSCs). In the present work, we have characterized the response of GSCs to hypoxic condition showing an upregulation of hypoxia-inducible factors and factors involved in the regulation of GSCs survival and proliferation. Ape treatment in hypoxic conditions is however able to inhibit cell cycle progression, causing a significant increase of aberrant mitosis with consequent decreased cell survival. Additionally, qRT-PCR analysis suggest that Ape downregulates the expression of stemness markers and miR-210 levels, one of the main regulators of the responses to hypoxic condition in different tumor types. Our data demonstrate that Ape impairs the GSCs proliferation and survival also in hypoxic condition, negatively modulating the adaptive response of GSCs to hypoxia.A zeolite imidazole framework (ZIF-67) was assembled onto the surface of ammonium polyphosphate (APP) for preparing a series multifunctional flame-retardant APP-ZIFs. The assembly mechanism, chemical structure, chemical compositions, morphology, and specific surface area of APP-ZIFs were characterized. The typical APPZ1 and APPZ4 were selected as intumescent flame retardants with dipentaerythritol (DPER) because of their superior unit catalytic efficiency of cobalt by thermogravimetric analysis. APPZ1 and APPZ4 possessed 6.8 and 92.1 times the specific surface area of untreated APP, which could significantly enhance the interfacial interaction, mechanical properties, and migration resistance when using in ethylene-vinyl acetate (EVA). With 25% loading, 25% APPZ4/DPER achieved a limiting oxygen index value of 29.4% and a UL 94 V-0 rating, whereas 25% APP/DPER achieved a limiting oxygen index value of only 26.2% and a V-2 rating, respectively. Selleckchem CAY10683 The peak of the heat release rate, smoke production rate, and CO production rate respectively decreased by 34.7%, 39.0%, and 40.1%, while the char residue increased by 91.7%. These significant improvements were attributed to the catalytic graphitization by nano cobalt phosphate and the formation of a more protective char barrier comprised of graphite-like carbon.Complex DNA damage, defined as at least two vicinal lesions within 10-20 base pairs (bp), induced after exposure to ionizing radiation, is recognized as fatal damage to human tissue. Due to the difficulty of directly measuring the aggregation of DNA damage at the nano-meter scale, many cluster analyses of inelastic interactions based on Monte Carlo simulation for radiation track structure in liquid water have been conducted to evaluate DNA damage. Meanwhile, the experimental technique to detect complex DNA damage has evolved in recent decades, so both approaches with simulation and experiment get used for investigating complex DNA damage. During this study, we propose a simplified cluster analysis of ionization and electronic excitation events within 10 bp based on track structure for estimating complex DNA damage yields for electron and X-ray irradiations. We then compare the computational results with the experimental complex DNA damage coupled with base damage (BD) measured by enzymatic cleavage and atomic force microscopy (AFM). The computational results agree well with experimental fractions of complex damage yields, i.e., single and double strand breaks (SSBs, DSBs) and complex BD, when the yield ratio of BD/SSB is assumed to be 1.3. Considering the comparison of complex DSB yields, i.e., DSB + BD and DSB + 2BD, between simulation and experimental data, we find that the aggregation degree of the events along electron tracks reflects the complexity of induced DNA damage, showing 43.5% of DSB induced after 70 kVp X-ray irradiation can be classified as a complex form coupled with BD. The present simulation enables us to quantify the type of complex damage which cannot be measured through in vitro experiments and helps us to interpret the experimental detection efficiency for complex BD measured by AFM. This simple model for estimating complex DNA damage yields contributes to the precise understanding of the DNA damage complexity induced after X-ray and electron irradiations.Environmental exposure to moderate-to-high levels of cadmium (Cd) and lead (Pb) is associated with nephrotoxicity. In comparison, the health impacts of chronic low-level exposure to Cd and Pb remain controversial. The aim of this study was to therefore evaluate kidney dysfunction associated with chronic low-level exposure to Cd and Pb in a population of residents in Bangkok, Thailand. The mean age and the estimated glomerular filtration rate (eGFR) for 392 participants (195 men and 197 women) were 34.9 years and 104 mL/min/1.73 m2, respectively, while the geometric mean concentrations of urinary Cd and Pb were 0.25 μg/L (0.45 μg/g of creatinine) and 0.89 μg/L (1.52 μg/g of creatinine), respectively. In a multivariable regression analysis, the eGFR varied inversely with blood urea nitrogen in both men (β = -0.125, p = 0.044) and women (β = -0.170, p = 0.008), while inverse associations of the eGFR with urinary Cd (β = -0.132, p = 0.043) and urinary Pb (β = -0.130, p = 0.044) were seen only in women. An increased urinary level of Cd to the median level of 0.38 μg/L (0.44 μg/g of creatinine) was associated with a decrease in the eGFR by 4.94 mL/min/1.73 m2 (p = 0.011). The prevalence odds of a reduced eGFR rose 2.5-, 2.9- and 2.3-fold in the urinary Cd quartile 3 (p = 0.013), the urinary Cd quartile 4 (p = 0.008), and the urinary Pb quartile 4 (p = 0.039), respectively. This study suggests that chronic exposure to low-level Cd is associated with a decline in kidney function and that women may be more susceptible than men to nephrotoxicity due to an elevated intake of Cd and Pb.