Macleanneergaard8382
be obtained depending on the software used.
To provide an automatic method for segmentation and diameter measurement of type B aortic dissection (TBAD).
Aortic computed tomography angiographic images from 139 patients with TBAD were consecutively collected. We implemented a deep learning method based on a three-dimensional (3D) deep convolutional neural (CNN) network, which realizes automatic segmentation and measurement of the entire aorta (EA), true lumen (TL), and false lumen (FL). Batimastat molecular weight The accuracy, stability, and measurement time were compared between deep learning and manual methods. The intra- and inter-observer reproducibility of the manual method was also evaluated.
The mean dice coefficient scores were 0.958, 0.961, and 0.932 for EA, TL, and FL, respectively. There was a linear relationship between the reference standard and measurement by the manual and deep learning method (
= 0.964 and 0.991, respectively). The average measurement error of the deep learning method was less than that of the manual method (EA, 1.64% vs. 4.13%; TL, 2.46% vficient segmentation and diameter measurement of TBADs based on the 3D deep CNN was both accurate and stable. This method is promising for evaluating aortic morphology automatically and alleviating the workload of radiologists in the near future.
We aimed to develop a prediction model for diagnosing severe aortic stenosis (AS) using computed tomography (CT) radiomics features of aortic valve calcium (AVC) and machine learning (ML) algorithms.
We retrospectively enrolled 408 patients who underwent cardiac CT between March 2010 and August 2017 and had echocardiographic examinations (240 patients with severe AS on echocardiography [the severe AS group] and 168 patients without severe AS [the non-severe AS group]). Data were divided into a training set (312 patients) and a validation set (96 patients). Using non-contrast-enhanced cardiac CT scans, AVC was segmented, and 128 radiomics features for AVC were extracted. After feature selection was performed with three ML algorithms (least absolute shrinkage and selection operator [LASSO], random forests [RFs], and eXtreme Gradient Boosting [XGBoost]), model classifiers for diagnosing severe AS on echocardiography were developed in combination with three different model classifier methods (logistic regressAVC volume and score should be investigated further.
Models based on the radiomics features of AVC and ML algorithms may perform well for diagnosing severe AS, but the added value compared to AVC volume and score should be investigated further.
Muscle depletion in patients undergoing liver transplantation affects the recipients' prognosis and therefore cannot be overlooked. We aimed to evaluate whether changes in muscle and fat mass during the preoperative period are associated with prognosis after deceased donor liver transplantation (DDLT).
This study included 72 patients who underwent DDLT and serial computed tomography (CT) scans. Skeletal muscle index (SMI) and fat mass index (FMI) were calculated using the muscle and fat area in CT performed 1 year prior to surgery (1 yr Pre-LT), just before surgery (Pre-LT), and after transplantation (Post-LT). Simple aspects of serial changes in muscle and fat mass were analyzed during three measurement time points. The rate of preoperative changes in body composition parameters were calculated (preoperative ΔSMI [%] = [SMI at Pre-LT - SMI at 1 yr Pre-LT] / SMI at Pre-LT × 100; preoperative ΔFMI [%] = [FMI at Pre-LT - FMI at 1 yr Pre-LT] / FMI at Pre-LT × 100) and assessed for correlation with patient suor survival after DDLT.
Previous reports indicated that the Slit2-Robo signalling pathway is involved in embryonic heart development and fibrosis in other solid organs, but its function in adult cardiac fibrosis has not been investigated. Here, we investigate the role of the Slit2-Robo1 signalling pathway in cardiac fibrosis.
The right atrial tissue samples were obtained from patients with valvular heart disease complicated by atrial fibrillation during heart valve surgery and from healthy heart donors. The fibrotic animal model is created by performing transverse aortic constriction (TAC) surgery. The Robo1, Slit2, TGF-β1, and collagen I expression levels in human and animal samples were evaluated by immunohistochemistry and western blot analysis. Echocardiography measured the changes in heart size and cardiac functions of animals. Angiotensin II (Ang II), Slit2-siRNA, TGF-β1-siRNA, recombinant Slit2, and recombinant TGF-β1 were transfected to cardiac fibroblasts (CFs) respectively to observe their effects on collagen I express be a new treatment for cardiac fibrosis.
The Slit2-Robo1 signalling pathway interfered with the TGF-β1/Smad pathway and promoted cardiac fibrosis. Blockade of Slit2-Robo1 might be a new treatment for cardiac fibrosis.
Transforming growth factor-β-activated kinase 1 (TAK1) plays a key role in regulating fibroblast and myoblast proliferation and differentiation. However, the TAK1 changes associated with Duchenne muscular dystrophy (DMD) are poorly understood, and it remains unclear how TAK1 regulation could be exploited to aid the treatment of this disease.
Muscle biopsies were obtained from control donors or DMD patients for diagnosis (n=6 per group, male, 2-3years, respectively). Protein expression of phosphorylated TAK1 was measured by western blot and immunofluorescence analysis. In vivo overexpression of TAK1 was performed in skeletal muscle to assess whether TAK1 is sufficient to induce or aggravate atrophy and fibrosis. To explore whether TAK1 inhibition protects against muscle damage, mdx (loss of dystrophin) mice were treated with adeno-associated virus (AAV)-short hairpin TAK1 (shTAK1) or NG25 (a TAK1 inhibitor). Serum analysis, skeletal muscle performance and histology, muscle contractile function, and gene anve whole-body muscle quality and the function of dystrophic skeletal muscle. Thus, TAK1 inhibition may constitute a novel therapy for DMD.
Our findings show that TAK1 activation exacerbated fibrosis and muscle degeneration and that TAK1 inhibition can improve whole-body muscle quality and the function of dystrophic skeletal muscle. Thus, TAK1 inhibition may constitute a novel therapy for DMD.