Windgarner1971
Computer simulations of individual-based models are frequently used to compare strategies for the control of epidemics spreading through spatially distributed populations. However, computer simulations can be slow to implement for newly emerging epidemics, delaying rapid exploration of different intervention scenarios, and do not immediately give general insights, for example, to identify the control strategy with a minimal socio-economic cost. Here, we resolve this problem by applying an analytical approximation to a general epidemiological, stochastic, spatially explicit SIR(S) model where the infection is dispersed according to a finite-ranged dispersal kernel. We derive analytical conditions for a pathogen to invade a spatially explicit host population and to become endemic. To derive general insights about the likely impact of optimal control strategies on invasion and persistence first, we distinguish between 'spatial' and 'non-spatial' control measures, based on their impact on the dispersal kernel; second, we quantify the relative impact of control interventions on the epidemic; third, we consider the relative socio-economic cost of control interventions. Overall, our study shows a trade-off between the two types of control interventions and a vaccination strategy. We identify the optimal strategy to control invading and endemic diseases with minimal socio-economic cost across all possible parameter combinations. We also demonstrate the necessary characteristics of exit strategies from control interventions. The modelling framework presented here can be applied to a wide class of diseases in populations of humans, animals and plants.Quiet standing exhibits strongly intermittent variability that has inspired at least two interpretations. First, variability can be intermittent through the alternating engagement and disengagement of complementary control processes at distinct scales. A second and perhaps deeper way to interpret this intermittency is through the possibility that postural control depends on cascade-like interactions across many timescales at once, suggesting specific non-Gaussian distributional properties at different timescales. Multiscale probability density function (PDF) analysis shows that quiet standing on a stable surface exhibits a crossover from low, increasing non-Gaussianity (consistent with exponential distributions) at shorter timescales, reflecting inertial control, towards higher non-Gaussianity. Feedback-based control at medium to longer timescales yields a linear decrease that is characteristic of cascade dynamics. Destabilizing quiet standing with an unstable surface or closed eyes serves to attenuate inertial control and to elicit more of the feedback-based control over progressively shorter timescales. The result was to strengthen the appearance of the linear decay indicating cascade dynamics. Finally, both linear and nonlinear indices of postural sway also govern the relative strength of crossover or of linear decay, suggesting that tempering of non-Gaussianity across log-timescale is a function of both extrinsic constraints and endogenous postural control. These results provide new evidence that cascading interactions across longer timescales supporting postural corrections can even recruit shorter timescale processes with novel task constraints that can destabilize posture.
Retinoblastoma (RB) is a frequent eye cancer in children. Long non-coding RNA (LncRNA) HOXA transcript at the distal tip (HOTTIP) is aberrantly expressed in cancer tissues. This study explores the underlying mechanism of lncRNA HOTTIP in RB.
HOTTIP expression in normal retinal cells and RB cell lines was detected using qRT-PCR. The proliferation of RB cells was measured using CCK-8 and EdU assays, and apoptosis was detected using flow cytometry and Western blotting after the transfection of si-HOTTIP into Y79 cells and pc-HOTTIP into HXO-RB-44 cells. LY3295668 The target relationships between HOTTIP and miR-101-3p, and miR-101-3p and STC1 were predicted by bioinformatics website and verified using dual-luciferase reporter gene assay. The binding of HOTTIP and miR-101-3p was verified using RNA pull-down assay. STC1 mRNA and protein in RB cells were measured using qRT-PCR and Western blotting. Moreover, si-HOTTIP and in-miR-101-3p/in-NC, and si-HOTTIP and pc-STC1/pcDNA were co-transfected into Y79 cells respectively to evaluate cell proliferation and apoptosis. Xenograft study was conducted, and Ki67-positive expression was detected using immunohistochemical staining.
HOTTIP expression was promoted in RB tissues and cells. Downregulation of HOTTIP inhibited proliferation and promoted apoptosis of Y79 cells, while upregulation of HOTTIP promoted proliferation and inhibited apoptosis of HXO-RB-44 cells. There were target relationships between HOTTIP and miR-101-3p, and miR-101-3p and STC1. Inhibition of miR-101-3p or overexpression of STC1 reversed the effect of si-HOTTIP on the proliferation and apoptosis of RB cells. Xenograft study showed that knockdown of HOTTIP suppressed the growth of RB
.
It could be concluded that HOTTIP sponged miR-101-3p to upregulate STC1 expression, thereby promoting RB cell proliferation and inhibiting apoptosis.
It could be concluded that HOTTIP sponged miR-101-3p to upregulate STC1 expression, thereby promoting RB cell proliferation and inhibiting apoptosis.
Some patients with cleft palate (CP) need secondary surgery to improve functionality. Although 4-dimensional assessment of velopharyngeal closure function (VPF) in patients with CP using computed tomography (CT) has been existed, the knowledge about quantitative evaluation and radiation exposure dose is limited. We performed a qualitative and quantitative assessment of VPF using CT and estimated the exposure doses.
Cross-sectional.
Computed tomography images from 5 preoperative patients with submucous CP (SMCP) and 10 postoperative patients with a history of CP (8 boys and 7 girls, aged 4-7 years) were evaluated.
Five patients had undergone primary surgery for SMCP; 10 received secondary surgery for hypernasality.
The presence of velopharyngeal insufficiency (VPI), patterns of velopharyngeal closure (VPC), and cross-sectional area (CSA) of VPI was evaluated via CT findings. Organ-absorbed radiation doses were estimated in 5 of 15 patients. The differences between cleft type and VPI, VPC patterns, and CSA of VPI were evaluated.