Langstonfalk1554

Z Iurium Wiki

Verze z 6. 11. 2024, 21:06, kterou vytvořil Langstonfalk1554 (diskuse | příspěvky) (Založena nová stránka s textem „We derive an electron-vibration model Hamiltonian in a quantum chemical framework and explore the extent to which such a Hamiltonian can capture key effect…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We derive an electron-vibration model Hamiltonian in a quantum chemical framework and explore the extent to which such a Hamiltonian can capture key effects of nonadiabatic dynamics. The model Hamiltonian is a simple two-body operator, and we make preliminary steps at applying standard quantum chemical methods to evaluate its properties, including mean-field theory, linear response, and a primitive correlated model. The Hamiltonian can be compared to standard vibronic Hamiltonians, but it is constructed without reference to potential energy surfaces through direct differentiation of the one- and two-electron integrals at a single reference geometry. The nature of the model Hamiltonian in the harmonic and linear-coupling regime is investigated for pyrazine, where a simple time-dependent calculation including electron-vibration correlation is demonstrated to exhibit the well-studied population transfer between the S2 and S1 excited states.This work presents the formalism and implementation for calculations of spin-orbit couplings (SOCs) using the Breit-Pauli Hamiltonian and non-relativistic wave functions described by the restricted active space configuration interaction (RASCI) method with general excitation operators of spin-conserving spin-flipping, ionizing, and electron-attaching types. The implementation is based on the application of the Wigner-Eckart theorem within the spin space, which enables the calculation of the entire SOC matrix based on the explicit calculation of just one transition between the two spin multiplets. Numeric results for a diverse set of atoms and molecules highlight the importance of a balanced treatment of correlation and adequate basis sets and illustrate the overall robust performance of RASCI SOCs. The new implementation is a useful addition to the methodological toolkit for studying spin-forbidden processes and molecular magnetism.The mechanism of water oxidation by the Photosystem II (PSII) protein-cofactor complex is of high interest, but specifically, the crucial coupling of protonation dynamics to electron transfer (ET) and dioxygen chemistry remains insufficiently understood. We drove spinach-PSII membranes by nanosecond-laser flashes synchronously through the water-oxidation cycle and traced the PSII processes by time-resolved single-frequency infrared (IR) spectroscopy in the spectral range of symmetric carboxylate vibrations of protein side chains. After the collection of IR-transients from 100 ns to 1 s, we analyzed the proton-removal step in the S2 ⇒ S3 transition, which precedes the ET that oxidizes the Mn4CaOx-cluster. Around 1400 cm-1, pronounced changes in the IR-transients reflect this pre-ET process (∼40 µs at 20 °C) and the ET step (∼300 µs at 20 °C). For transients collected at various temperatures, unconstrained multi-exponential simulations did not provide a coherent set of time constants, but constraining the ET time constants to previously determined values solved the parameter correlation problem and resulted in an exceptionally high activation energy of 540 ± 30 meV for the pre-ET step. We assign the pre-ET step to deprotonation of a group that is re-protonated by accepting a proton from the substrate-water, which binds concurrently with the ET step. The analyzed IR-transients disfavor carboxylic-acid deprotonation in the pre-ET step. Temperature-dependent amplitudes suggest thermal equilibria that determine how strongly the proton-removal step is reflected in the IR-transients. Unexpectedly, the proton-removal step is only weakly reflected in the 1400 cm-1 transients of PSII core complexes of a thermophilic cyanobacterium (T. elongatus).Results from extensive molecular dynamics simulations of molten LiCl, NaCl, KCl, and RbCl over a wide range of temperatures are reported. Comparison is made between the "Polarizable Ion Model" (PIM) and the non-polarizable "Rigid Ion Model" (RIM). Densities, self-diffusivities, shear viscosities, ionic conductivities, and thermal conductivities are computed and compared with experimental data. In addition, radial distribution functions are computed from ab initio molecular dynamics simulations and compared with the two sets of classical simulations as well as experimental data. The two classical models perform reasonably well at capturing structural and dynamic properties of the four molten alkali chlorides, both qualitatively and often quantitatively. With the singular exception of liquid density, for which the PIM is more accurate than the RIM, there are few clear trends to suggest that one model is more accurate than the other for the four alkali halide systems studied here.Soda-lime-silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and diffusion properties of the system at temperatures ranging from 1400 K to 3000 K. We show that Na+ and Ca2+ ions adopt a different structural organization within the silica network, with Ca2+ ions having a greater affinity for non-bridging oxygens than Na+. We further link this structural behavior to their different diffusivities, suggesting that escaping from the first oxygen coordination shell is the limiting step for the diffusion. Na+ diffuses faster than Ca2+ because it is bonded to a smaller number of non-bridging oxygens. The formed ionic bonds are also less strong in the case of Na+.Progress toward quantum technologies continues to provide essential new insights into the microscopic dynamics of systems in phase space. This highlights coherence effects whether these are due to ultrafast lasers whose energy width spans several states all the way to the output of quantum computing. Surprisal analysis has provided seminal insights into the probability distributions of quantum systems from elementary particle and also nuclear physics through molecular reaction dynamics to system biology. It is therefore necessary to extend surprisal analysis to the full quantum regime where it characterizes not only the probabilities of states but also their coherence. NGI-1 inhibitor In principle, this can be done by the maximal entropy formalism, but in the full quantum regime, its application is far from trivial [S. Dagan and Y. Dothan, Phys. Rev. D 26, 248 (1982)] because an exponential function of non-commuting operators is not easily accommodated. Starting from an exact dynamical approach, we develop a description of the dynamics where the quantum mechanical surprisal, a linear combination of operators, plays a central role.

Autoři článku: Langstonfalk1554 (Bryant Lynge)