Morganholm6772
9) per patient-year as compared with 3.2% per patient-year (95% CI 2.4-4.3) among nonusers (hazard ratio 0.37; 95% CI 0.1-1.0). Women who were COC users and high risk by HERDOO2 score had a recurrence rate of 3.5% (95% CI 0.4-12.5) compared with 6.1% (95% CI 4.3-8.5) among women who were non-COC users and at high risk by HERDOO2 score (HR 0.6, 95% CI 0.1-2.5).
Women who were COC users at the time of an otherwise unprovoked VTE event had a lower VTE recurrence rate during long-term follow-up, compared with nonusers. The use of HERDOO2 rule may help identify higher risk women with COC use.
Women who were COC users at the time of an otherwise unprovoked VTE event had a lower VTE recurrence rate during long-term follow-up, compared with nonusers. The use of HERDOO2 rule may help identify higher risk women with COC use.
Congenital hydrocephalus-3 with brain anomalies (HYC3, MIM 617967) is a rare form of congenital hydrocephalus characterized by severe hydrocephalus and cerebellar abnormalities, the onset of the disease occurs in utero even resulting in fetal death. A very limited spectrum of WDR81 pathogenic variants had been reported in three unrelated families with HYC3. This study aims at presenting novel compound heterozygous frameshift variants in WDR81 in a Chinese fetus.
Whole-exome sequencing (WES) was performed for a fetus with multiple congenital anomalies including sever hydrocephalus, cleft lip and palate, hydrops fetalis, hepatomegaly, and cerebellar hypoplasia. Sanger sequencing was performed to confirm the origin of the variants subsequently. Variants classification was based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines.
Two novel heterozygous variants c.146_147insG (p.Thr52fs) and c.673delC (p.Leu225fs) in WDR81 were identified. Sanger sequencing revealed that the c.146_147insG mutation was maternal origin and the c.673delC mutation was paternal origin. Both variants were pathogenic according to the ACMG/AMP guidelines.
The present study expands the mutation spectrum of WDR81 and help further define the genotype-phenotype correlations of HYC3. WDR81-related HYC3 were highly clinical heterogeneity. We suggested that fetal hydrocephalus with extracerebral manifestations may be suggestive of WDR81 deficiency and WES is effective for achieving a conclusive diagnosis for disorder.
The present study expands the mutation spectrum of WDR81 and help further define the genotype-phenotype correlations of HYC3. WDR81-related HYC3 were highly clinical heterogeneity. KC7F2 We suggested that fetal hydrocephalus with extracerebral manifestations may be suggestive of WDR81 deficiency and WES is effective for achieving a conclusive diagnosis for disorder.Mucosal melanoma is a rare form of melanoma which arises from melanocytes in the mucosal membranes and can be effectively treated with immune checkpoint blockade (ICB). However, response rates in mucosal melanoma are lower than those observed for cutaneous melanomas. Targeted sequencing of up to 447 genes (OncoPanel) was performed on tumors from all mucosal melanoma patients seen at the Dana-Farber Cancer Institute from 2011 until March 2019. We identified a total of 46 patients who received ICB with both tumor-genotype and ICB response data available. Within this cohort of patients, 16 (35%) had durable clinical benefit (DCB) to their first line of ICB. The average mutational burden/megabase was 6.23 and did not correlate with tumor response to ICB. Patients with KIT aberrations had a higher DCB rate compared with patients with wildtype KIT (71 vs. 28%), but this was not found to be statistically significant. For comparison, we analyzed tumor genotypes from an additional 50 mucosal melanoma tumors and 189 cutaneous melanoma tumors. The most frequent mutations in mucosal melanoma were in SF3B1 (27%), KIT (18%), and NF1 (17%), a pattern that is distinct from cutaneous melanomas. In addition, there were genetic differences observed based upon the site of origin of the mucosal melanoma. Our findings explore clinical features of response in patients with mucosal melanoma treated with ICB and demonstrate a low mutational burden that does not correlate with response. In addition, the lack of significant association between the genetic aberrations tested and response to ICB indicates the need for further exploration in this patient population.Phagosome maturation in macrophage is essential to the clearance of pathogenic materials in host defence but the dynamic features remain difficult to be measured in real time. Herein, we reported the multilayered Au@MnOx @SiO2 nanoparticle as a robust pH-sensitive plasmonic nanosensor for monitoring the dynamic acidification features over the phagosome maturation process in macrophage under darkfield microscopy. For this multilayered nanosensor, the gold nanoparticle core plays a role of signal reporter, the MnOx shell and the outmost SiO2 act as the sensing layer and the protecting layer, respectively. After subject to the acidic buffer solution, the MnOx layer in the multilayered nanoprobe could be decomposed rapidly, resulting in a remarkable spectral shift and color change under darkfield microscopy. We demonstrated this nanosensor for the investigation of single phagosome acidification dynamics by monitoring the color changes of nanoprobes after phagocytosis over time. The nanoprobes after phagocytosized in macrophage displayed a slight color change within the first hour and then cost several minutes to change from red to green in the next stage, indicating the phagosome undergoes a slow first and then fast acidification feature as well as a slow-to-fast acidification translation over the phagosome maturation process. Moreover, we validated that the slow-to-fast acidification translation was dependent on the activation of V-ATPase from the ATP depletion assay. We believed that this nanosensor is promising for studying the dynamic acidification features as well as disorders in phagosome maturation in phagocytic cells, which might provide valuable information for understanding the disease pathogenesis related to phagosome dysfunctions.