Mccurdyrobles1956
The experiments were done with different concentrations of CR and different bed heights of CSF as the PRB for 90 days. There was a delay in the breakthrough time when decreasing the contaminant concentrations and when increasing the composite adsorbent-filter CSF bed height. The breakthrough curves were well represented by the COMSOL model.This study proposed a method for constructing a low impact development (LID) plan to improve the utilization rate of rainwater in a highway service area and solve the problem of waterlogging. Firstly, based on the theory of LID, taking the total runoff as the control goal, and combining it with the functional zoning of the highway service area and the characteristics of LID facilities, several LID schemes were proposed. Then, the evaluation system of the LID scheme in service area was established by the analytic hierarchy process (AHP). These preliminary construction schemes were compared from three aspects (runoff control efficiency, economic efficiency and social efficiency) to determine the best LID plan. Finally, taking the Pu'er tunnel service area as an example, the construction scheme of the sponge city service area was optimized.TiO2 crystals are widely used in photocatalytic processes due to their low cost and fabulous catalytic performance. As described in our previous study, three types of TiO2 with the main surfaces of 101, 001 and 100 were synthesized. In this study, the three types of TiO2 are used to investigate roxithromycin (ROX) photocatalytic degradation kinetics and the pH effect. For photocatalytic degradation, the obtained data have shown that the overall order of optimal degradation is shown as 101 > 001 > 100. The photooxidation kinetics for 101 facet conforms to first-order kinetics at from pH 5 to pH 10, and most of the photooxidation kinetics for 001 and 100 facets are fitted well with the zero-order and second-order kinetics, respectively. The pH effects are varied to the three types of TiO2, of which 101 has the best degradation effect at pH values 4, 7 and 8, while 001 works best at pH 5 or pH 6, and 100 has a relatively obvious effect at pH 4 and pH 9. The relation between adsorption and oxidation has been tested and proved that the strong adsorption corresponds to the fast oxidation.Furfural residue (FR) is an inevitable by-product of industrial furfural production. If FR is not managed properly, it will result in environmental problems. In this study, FR was used as a novel precursor for activated carbon (AC) production by H3PO4 activation under different conditions. Under optimum conditions, the prepared FRAC had high BET surface area (1,316.7 m2/g) and micro-mesoporous structures. The prepared FRAC was then used for the adsorption of Cr(VI). The effect of solution pH, contact time, initial Cr(VI) concentration, and temperature was systematically studied. Characterization of the adsorption process indicated that the experimental data were well-fitted by the Langmuir isotherm model and pseudo-second-order kinetics model. The maximum adsorption capacity of 454.6 mg/g was achieved at pH 2.0, which was highly comparable to the other ACs reported in the literatures. The preparation of FRAC using H3PO4 activation can make use of FR's characteristic acidity, which could make it preferable in practical industrial production.Forward osmosis (FO) treatment of desulfurization wastewater shows great potential in laboratory scale tests. To explore the adaptability of the forward osmosis system in the practical treatment of desulfurization wastewater, we carried out a pilot test on desulfurization wastewater treated by the traditional method under the conditions of adding soda ash (SA) and adding FO scale inhibitor (FOSI). The results showed that the FO system could concentrate desulfurization wastewater with an average TDS of 15,816-32,820 mg/L in the influent water to an average TDS of more than 120,000 mg/L, which was concentrated 3.8-7.8 times. The removal rates of Ca2+, Mg2+ and Cl- were more than 99% and the system could operate stably for a long time. Under the condition of adding SA and FOSI, the system recovery rate was 85.38% and 73.02%, respectively. The operating cost was 25 RMB/ton and 21.77 RMB/ton, respectively. The results showed that the application of forward osmosis in desulfurization wastewater treatment was technically feasible and economically effective.A new kind of flat sheet ultrafiltration membrane was prepared by a promising membrane material, poly (aryl ether nitrile) (PEN), via non-solvent induced phase separation. TTNPB The effect of solvents, N-methyl-2-pyrrolidone (NMP) and dimethyl acetamide (DMAc), as well as additive of poly (ethylene glycol) (PEG) with different molecular weights on the structure and permeation performance of synthesized membranes were investigated. Comparing with NMP, DMAc is more suitable for the casting solution preparation due to better solubility. A gradually changing pore from sponge-like to finger-like can be observed when PEG was added with DMAc as solvent, while a finger-like pore structure always appears in the NMP system with or without PEG. In both systems, the formation of macrovoids is effectively promoted by the addition of PEG, and higher porosity membranes can be obtained by PEG with higher molecular weight. With the increase of PEG molecular weight from 400 to 10,000 Da, the permeate flux increases from 74.5 to 114.3 L·m-2·h-1 and from 102.0 to 130.8 L·m-2·h-1 under a 100 kPa pressure-driven when NMP and DMAc were used as solvents, respectively. The membranes prepared by DMAc exhibit outstanding rejection of BSA with rejections all above 96.5%.This study focuses on the synthesis of various nanocomposites with heterojunction structures, MgAl-LDH (LDH = layered double hydroxides) hybrid with semiconductor such as MoO3 and CuO. These solids were synthesized by co-precipitation method at constant pH and have been characterized extensively using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and transmission electron microscopy-energy dispersive X-ray (TEM-EDX) methods. The catalytic activity of nanocomposites was tested in the photocatalytic degradation under solar irradiation of emerging pollutants as the pharmaceutical metronidazole (MNZ). The experimental parameters, including initial MNZ concentration, the nature of oxide incorporate in the photocatalyst, catalyst loading were explored. All the synthesized samples showed high photocatalytic performances; the highest photocatalysis efficiency was achieved with the photocatalyst dose 1.5 g/L and initial MNZ concentration of 10 mg/L at neutral pH. The photocatalytic experimental results were fitted very well to the Langmuir-Hinshelwood model.