Kingbarber1019

Z Iurium Wiki

Verze z 6. 11. 2024, 15:15, kterou vytvořil Kingbarber1019 (diskuse | příspěvky) (Založena nová stránka s textem „Humans and other mammalian species possess an endogenous circadian clock system that has evolved in adaptation to periodically reoccurring environmental ch…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Humans and other mammalian species possess an endogenous circadian clock system that has evolved in adaptation to periodically reoccurring environmental changes and drives rhythmic biological functions, as well as behavioural outputs with an approximately 24-hour period. In mammals, body clocks are hierarchically organized, encompassing a so-called pacemaker clock in the hypothalamic suprachiasmatic nucleus (SCN), non-SCN brain and peripheral clocks, as well as cell-autonomous oscillators within virtually every cell type. A functional clock machinery on the molecular level, alignment among body clocks, as well as synchronization between endogenous circadian and exogenous environmental cycles has been shown to be crucial for our health and well-being. Yet, modern life constantly poses widespread challenges to our internal clocks, for example artificial lighting, shift work and trans-meridian travel, potentially leading to circadian disruption or misalignment and the emergence of associated diseases. For instance many of us experience a mismatch between sleep timing on work and free days (social jetlag) in our everyday lives without being aware of health consequences that may arise from such chronic circadian misalignment, Hence, this review provides an overview of the organization and molecular built-up of the mammalian circadian system, its interactions with the outside world, as well as pathologies arising from circadian disruption and misalignment.Alcohol dehydrogenases (ADH) are widely used to enantioselectively reduce ketones to chiral alcohols, but their application in industrial scale oxidations is rare. Reasons are the need for an NAD(P)+ cofactor regeneration system, often low performance in oxidative reactions and the limited substrate scope of ADHs. ADHA from Candida magnoliae DSMZ 70638 is identified to efficiently catalyze the regio-selective hydroxy-lactone oxidations to hydroxy-lactones. Hydroxy-lactones are common intermediates in industrial processes to cholesterol lowering (va)statin drugs. A biocatalytic aliphatic hydroxy-lactone oxidation process is developed using pure oxygen as oxidant reaching volumetric productivities of up to 12 g L-1 h-1 , product concentrations of almost 50 g L-1 and 95% reaction yield. For co-factor recycling a previously engineered, water-forming NAD(P)H-oxidase from Streptococcus mutans is used. The process is scaled up to industrial pilot plant scale and it could be demonstrated that ADH catalyzed oxidations can be developed to efficient and safe processes. However, the ADHA wild-type enzyme is not productive enough in chlorolactol oxidation. Therefore, enzyme engineering and multi-parameter screening is successfully applied to optimize the enzyme for the target reaction. The optimized ADHA variant shows a 17-fold higher oxidative activity, a 26°C increased stability and is applied to develop an efficient chlorolactol oxidation process.

NG2 cells in the brain are comprised of pericytes and NG2 glia and play an important role in the execution of cerebral hypoxia responses, including the induction of erythropoietin (EPO) in pericytes. Oxygen-dependent angiogenic responses are regulated by hypoxia-inducible factor (HIF), the activity of which is controlled by prolyl 4-hydroxylase domain (PHD) dioxygenases and the von Hippel-Lindau (VHL) tumour suppressor. However, the role of NG2 cells in HIF-regulated cerebral vascular homeostasis is incompletely understood.

To examine the HIF/PHD/VHL axis in neurovascular homeostasis, we used a Cre-loxP-based genetic approach in mice and targeted Vhl, Epo, Phd1, Phd2, Phd3 and Hif2a in NG2 cells. Cerebral vasculature was assessed by immunofluorescence, RNA in situ hybridization, gene and protein expression analysis, gel zymography and in situ zymography.

Vhl inactivation led to a significant increase in angiogenic gene and Epo expression. This was associated with EPO-independent expansion of capillary networks in cortex, striatum and hypothalamus, as well as pericyte proliferation. A comparable phenotype resulted from the combined inactivation of Phd2 and Phd3, but not from Phd2 inactivation alone. Concomitant PHD1 function loss led to further expansion of the neurovasculature. Genetic inactivation of Hif2a in Phd1/Phd2/Phd3 triple mutant mice resulted in normal cerebral vasculature.

Our studies establish (a) that HIF2 activation in NG2 cells promotes neurovascular expansion and remodelling independently of EPO, (b) that HIF2 activity in NG2 cells is co-controlled by PHD2 and PHD3 and (c) that PHD1 modulates HIF2 transcriptional responses when PHD2 and PHD3 are inactive.

Our studies establish (a) that HIF2 activation in NG2 cells promotes neurovascular expansion and remodelling independently of EPO, (b) that HIF2 activity in NG2 cells is co-controlled by PHD2 and PHD3 and (c) that PHD1 modulates HIF2 transcriptional responses when PHD2 and PHD3 are inactive.We performed an updated meta-analysis to compare the efficacy of the zipper device and sutures for wound closure after surgery. A computerised literature search was performed for published trials in PubMed, Web of Science, the Cochrane Library, and Google Scholar. Two reviewers independently scrutinised the trials, extracted data, and assessed the quality of trials. The primary outcome was surgical site infections (SSI). The secondary outcomes were wound dehiscence, total wound complications, wound closure time, and scar score. Statistical analysis was performed in the Stata 12.0. Of the 130 citations, eight trials (1207 participants) met eligibility criteria and were included. Ziftomenib molecular weight The zipper device achieved a lower SSI rate (RR 0.63, [95% CI 0.41-0.96, P = 0.032]), a shorter wound closure time (SMD -8.53 [95% CI -11.93 to -5.13, P = 0.000]) and a better scar score (SMD 0.42 [95% CI 0.22-0.62, P = 0.000]) than sutures. No significant difference was shown in the incidence of wound dehiscence and total wound complications. Therefore, the zipper device provides the advantages of anti-infection, time-saving, and cosmesis for wound closure.Highlight Sasaki and colleagues report their experience with double stenting combined with endoscopic ultrasound-guided choledochoduodenostomy using a new anti-reflux metal stent to prevent duodenobiliary reflux in combined biliary and duodenal obstruction. This double stenting method is a new strategy for the management of combined biliary and duodenal obstruction.

Autoři článku: Kingbarber1019 (Ejlersen Melvin)