Skovsgaardtyler8938

Z Iurium Wiki

Verze z 6. 11. 2024, 14:28, kterou vytvořil Skovsgaardtyler8938 (diskuse | příspěvky) (Založena nová stránka s textem „Copyright © 2020 American Chemical Society.In this work, the catalytic gasification of sewage sludge in supercritical water was investigated in a batch re…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Copyright © 2020 American Chemical Society.In this work, the catalytic gasification of sewage sludge in supercritical water was investigated in a batch reactor (460 °C, 27 MPa, 6 min), and the separate and combined effects of the catalyst on the H2 production and phosphorus yield were investigated. The experimental results indicated that K2CO3 alone improved the H2 yield, gasification efficiency (GE), and carbon gasification efficiency (CE). The largest H2 yield of 54.28 mol/kg was achieved, which was approximately three times that without a catalyst. Furthermore, the inorganic phosphorus (IP) yield increased with the addition of K2CO3. However, when H2O2 was added, the H2 yield quickly decreased with increasing H2O2 coefficient, and more than 97.8% of organic phosphorus (OP) was converted into IP. The H2 yield increased with the addition of various K2CO3/H2O2 ratios, whereas the IP yield decreased. Copyright © 2020 American Chemical Society.Herein, Ni-W alloy matrixes were successfully fortified with two salen-type Schiff bases 1-((E)-(2-((E)-(2-hydroxynaphthalen-1-yl)methyleneamino)phenylimino)methyl)naphthalen-2-ol (OPD) and 1-((E)-(2-((E)-(2-hydroxynaphthalen-1-yl)methyleneamino)phenylimino)methyl)naphthalen-2-ol (PPD) as additives, of similar molecular structure but varied isomeric spacers, using a facile direct current electrodeposition technique. The resulting coatings from the additive-introduced reaction system were termed as Ni-W/OPD and Ni-W/PPD throughout the study. The deterioration process (0.5 M H2SO4), surface properties, elemental composition, functional groups, and structurs of the resultant coatings were analyzed by means of Tafel and electrochemical impedance spectroscopy, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy, atomic force microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction (XRD). The bare Ni-W alloy deposition resulten parameters. Copyright © 2020 American Chemical Society.Materials that exhibit responsiveness toward biological signals are currently subjected to intense research in the field of drug delivery. In our study, we tried to develop cancer-targeted and redox-responsive nanoparticles (NPs) from disulfide-linked oxidized cysteine-phenylalanine (CFO). The NPs were conjugated with folic acid (FA) to specifically target cancer cells, and the presence of disulfide bonds would enabled the disintegration of the particles in the presence of elevated levels of glutathione (GSH) in cancer cells. Anticancer drug doxorubicin (Dox) was successfully loaded inside the disulfide-linked nanoparticles (CFO-Dox-NPs), which further demonstrated stimuli-responsive drug release in the presence of GSH. We have also demonstrated enhanced uptake of FA-derivatized NPs (FA-CFO-NPs) in cancerous cells (C6 glioma and B16F10 melanoma cells) than in normal cells (HEK293T cells) due to the overexpression of FA receptors on the surface of cancer cells. Cytotoxicity studies in C6 cells and B16F10 cells further revealed enhanced efficacy of Dox loaded (FA-CFO-Dox-NPs) as compared to the native drug. The findings of this study clearly demonstrated that the disulfide-linked nanoparticle system may provide a promising selective drug delivery platform in cancer cells. Copyright © 2020 American Chemical Society.Electrochemical oxidation has been considered as an efficient method to degrade pharmaceuticals and personal care products. Maintaining low power consumption while increasing the number of oxidation intermediates is deserving of exploring. Herein, Ti/SnO2-Sb/Zr0.3Ir0.7O2 was prepared by Zr doped into IrO2 and used for Sulfamethoxazole (SMX) degradation. The addition of Zr significantly increased the electrochemically active area and facilitated the catalyst to degrade SMX dramatically at a lower overpotential. The extremely outstanding lifetime of catalysts can reach 800 h during the accelerated life test, which showed excellent stability and developmental prospects. The overpotential at 10 mA·cm-2 is about 329 mV, indicating that this electrode has a high oxygen evolution reaction activity. Furthermore, the electrical efficiency per log order for the electrode is only 8.50 kW h m-3 at 4 V. Our research provides new anode electrochemical catalysts for the degradation of organic pollutants. Copyright © 2020 American Chemical Society.Parabens are widely used as preservatives in food, pharmaceutical, and cosmetic products. These compounds are known for their estrogen agonist activity. This research investigates the synthesis of micro- and mesoporous silica from coal fly ash at different pH values (13, 11, 9, and 7) as well as its use as an adsorbent for the removal of parabens. The materials were characterized, and X-ray fluorescence (XRF) analysis revealed that the fly ash acid treatment reduced the presence of aluminum, iron, and calcium oxides and also that silica synthesized at lower pH values (7 and 9) showed a higher SiO2 content. find more X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed microporous silica formation for silica synthesized at pH 13 and mesoporous silica at pH 7, 9, and 11. Adsorption tests were performed with materials, and FA-AT7 showed a higher adsorption capacity. The effect of factors (A) adsorbent mass, (B) initial paraben concentration, and (C) agitation rate on the adsorption process was studied for the FA-AT7 adsorbent using a factorial experimental design. Standardized Pareto charts revealed a negative effect of factor A, positive effect of factor B, and negative interaction effects of factors A-B for all studied parabens. Isotherms and multicomponent kinetic studies were performed. A linear type-III isotherm was obtained, and adsorption equilibrium was reached at approximately 10 min. Copyright © 2020 American Chemical Society.The intrinsically fluorescent highly hydrophilic multifunctional aliphatic terpolymer, maleic acid (MA)-co-2-(N-(hydroxymethyl)acrylamido)succinic acid (NHASA)-co-N-(hydroxymethyl)acrylamide (NHMA), that is, 1, was designed and synthesized via C-C/N-C-coupled in situ allocation of a fluorophore monomer, that is, NHASA, composed of amido and carboxylic acid functionalities in the polymerization of two nonemissive MA and NHMA. The scalable and reusable intrinsically fluorescent biocompatible 1 was suitable for sensing and high-performance adsorptive exclusion of Fe(III), along with the imaging of Madin-Darby canine kidney cells. The structure of 1, in situ fluorophore monomer, aggregation-induced enhanced emission, cell-imaging ability, and superadsorption mechanism were studied via microstructural analyses using 1H/13C NMR, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, atomic absorption spectroscopy, ultraviolet-visible spectroscopy, thermogravimetric analysis, dynamic light scattering, high-resolution transmission electron microscopy, solid-state fluorescence, fluorescence lifetime, and fluorescence imaging, along with measuring kinetics, isotherms, and thermodynamic parameters.

Autoři článku: Skovsgaardtyler8938 (Wilkerson Navarro)