Connorkorsgaard5024
We have carried out a structural exploration of (2S,4R,5R)-2-(bis(4-fluorophenyl)methyl)-5-((4-methoxybenzyl)amino)tetrahydro-2H-pyran-4-ol (D-473) to investigate the influence of various functional groups on its aromatic ring, the introduction of heterocyclic aromatic rings, and the alteration of the stereochemistry of functional group on the pyran ring. The novel compounds were tested for their affinities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in inhibiting monoamine neurotransmitter uptake. Our studies identified some of the most potent dopamine-norepinephrine reuptake inhibitors known to-date like D-528 and D-529. The studies also led to development of potent triple reuptake inhibitors such as compounds D-544 and D-595. A significant influence from the alteration of the stereochemistry of the hydroxyl group on the pyran ring of D-473 on transporters affinities was observed indicating stereospecific preference for interaction. The inhibitory profiles and structure-activity relationship of lead compounds were further corroborated by molecular docking studies at the primary binding sites of monoamine transporters. The nature of interactions found computationally correlated well with their affinities for the transporters.Antimicrobial resistance has rendered many conventional therapeutic measures, such as antibiotics, ineffective. This makes the treatment of infections from pathogenic micro-organisms a major growing health, social, and economic challenge. Recently, nanomaterials, including two-dimensional (2D) materials, have attracted scientific interest as potential antimicrobial agents. Many of these studies, however, rely on the input of activation energy and lack real-world utility. In this work, we present the broad-spectrum antimicrobial activity of few-layered black phosphorus (BP) at nanogram concentrations. This property arises from the unique ability of layered BP to produce reactive oxygen species, which we harness to create this unique functionality. BP is shown to be highly antimicrobial toward susceptible and resistant bacteria and fungal species. To establish cytotoxicity with mammalian cells, we showed that both L929 mouse and BJ-5TA human fibroblasts were metabolically unaffected by the presence of BP. Finally, we demonstrate the practical utility of this approach, whereby medically relevant surfaces are imparted with antimicrobial properties via functionalization with few-layer BP. Given the self-degrading properties of BP, this study demonstrates a viable and practical pathway for the deployment of novel low-dimensional materials as antimicrobial agents without compromising the composition or nature of the coated substrate.In this work, we report the presence of surface-densified phases (β-Ni5O8, γ-Ni3O4, and δ-Ni7O8) in LiNiO2 (LNO)- and LiNi0.8Al0.2O2 (LNA)-layered compounds by combined atomic level scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). These surface phases form upon electrochemical aging at high state of charge corresponding to a fully delithiated state. A unique feature of these phases is the periodic occupancy by Ni2+ in the Li layer. This periodic Ni occupancy gives rise to extra diffraction reflections, which are qualitatively similar to those of the LiNi2O4 spinel structure, but these surface phases have a lower Ni valence state and cation content than spinel. These experimental results confirm the presence of thermodynamically stable surface phases and provide new insights into the phenomena of surface phase formation in Ni-rich layered structures.The scrupulous designation of hollow and porous electroactive materials incorporating prolific redox-active polyphase transition-metal oxide decorated with polyphase transition-metal sulfide onto rGO (reduced graphene oxide)-supported conductive substrate has never been an easy task due to the very good coordination affair of sulfur toward transition metals. Herein, cost-effective hydrothermal growth followed by a metal-organic framework (MOF)-mediated sulfidation approach is employed to achieve burl-like Ni-Co-S nanomaterial-integrated hollow and porous NiMoO4 nanotubes onto rGO-coated Ni foam (rGO-NiMoO4@Ni-Co-S) as the electrode material for supercapacitors. The open framework of the rGO-Co-MOF template after the etching and sulfidation process not only enables the creation of a tubular structure of NiMoO4 nanorods but also provides convenient ion-electron pathways to promote rapid faradic reactions for the hybrid composite electrode. Owing to the unique hollow and tubular structure, the as-fabricated rGO-NiMoO4@Ni-Co-S electrode exhibits a high specific capacity of 318 mA h g-1 at 1 A g-1 and remarkable cyclic performance of 88.87% after 10,000 consecutive charge-discharge cycles in an aqueous 2 M KOH electrolyte on a three-electrode configuration. Moreover, the assembled rGO-NiMoO4@Ni-Co-S//rGO-MDC (MOF-derived carbon) asymmetric supercapacitor device exhibits a satisfactory energy density of 57.24 W h kg-1 at a power density of 801.8 W kg-1 with an admirable life span of 90.89% after 10,000 repeated cycles.
To identify predictive risk factors of lumbar stress (LS) fracture developing from an asymptomatic stress reaction of the pedicle among adolescent male soccer players.
Prospective cohort study.
Amateur Japanese adolescent male soccer team.
Japanese adolescent male soccer players (n = 195) aged 12 to 13 years.
Height, body weight, body mass index, muscle tightness of both lower extremities (iliopsoas, hamstrings, and quadriceps), lumbar bone mineral content, developmental age, and lumbar lordosis angle were measured as baseline measurements.
Players who were diagnosed with an asymptomatic stress reaction of the lumbar spine pedicle at baseline were followed; extension-based lumbar pain was defined 1 year after the baseline. The players were assigned to the LS fracture or control (CON) group at follow-up.
At baseline, 40 boys were diagnosed with an asymptomatic stress reaction of the lumbar spine pedicle. selleck The difference in muscle tightness between the kicking leg and supporting leg was significantly different (P = 0.