Freedmanmcwilliams4825

Z Iurium Wiki

Verze z 5. 11. 2024, 21:40, kterou vytvořil Freedmanmcwilliams4825 (diskuse | příspěvky) (Založena nová stránka s textem „nt and consumers. Copyright © 2020 Tedesco, Beraldo, Massimo, Fioravanti, Volpatti, Dirks and Galuppi.Piglet castration and tail-docking are routinely per…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

nt and consumers. Copyright © 2020 Tedesco, Beraldo, Massimo, Fioravanti, Volpatti, Dirks and Galuppi.Piglet castration and tail-docking are routinely performed in the United States without analgesia. Pain medications, predominately non-steroidal anti-inflammatory drugs, are used in the EU/Canada to decrease pain associated with processing and improve piglet welfare, however, past studies have shown the efficacy and required dose remain controversial, particularly for meloxicam. This study assessed the pharmacokinetics of three NSAIDs (meloxicam, flunixin, and ketoprofen) in piglets prior to undergoing routine castration and tail-docking. Five-day-old male piglets (8/group) received one of 3 randomized treatments; meloxicam (0.4 mg/kg), flunixin (2.2 mg/kg), ketoprofen (3.0 mg/kg). Two hours post-dose, piglets underwent processing. Drug concentrations were quantified in plasma and interstitial fluid (ISF) and pharmacokinetic parameters were generated by non-compartmental analysis. Time to peak concentration (Tmax) of meloxicam, flunixin, and S(-)-ketoprofen in plasma were 1.21, 0.85, and 0.59 h, compared to 2.81, 3.64, and 2.98 h in the ISF, respectively. The apparent terminal half-life of meloxicam, flunixin and S(-)-ketoprofen were 4.39, 7.69, and 3.50 h, compared to 11.26, 16.34, and 5.54 h, respectively in the ISF. If drug concentrations in the ISF are more closely related to efficacy than the plasma, then the delay between the Tmax in plasma and ISF may be relevant to the timing of castration in order to provide the greatest analgesic effect. Copyright © 2020 Nixon, Almond, Baynes and Messenger.Keel bone fractures and deviations belong to the most severe animal welfare problems in laying hens and are influenced by several factors such as husbandry system and genetic background. It is likely that egg production also influences keel bone health due to the high demand of calcium for the eggshell, which is, in part, taken from the skeleton. The high estrogen plasma concentration, which is linked to the high laying performance, may also affect the keel bone as sexual steroids have been shown to influence bone health. The aim of this study was to investigate the relationship between egg production, genetically determined high laying performance, estradiol-17ß concentration, and keel bone characteristics. Two hundred hens of two layer lines differing in laying performance (WLA high performing; G11 low performing) were divided into four treatment groups Group S received an implant containing a GnRH agonist that suppressed egg production, group E received an implant containing the sexual steroid estradiol-17on and deviations. Moreover, our results confirm that genetic background influences fracture prevalence and indicate that the selection for high laying performance may negatively influence keel bone health. Copyright © 2020 Eusemann, Patt, Schrader, Weigend, Thöne-Reineke and Petow.Salmonella has been known as the most important foodborne pathogen, which can infect humans via consuming contaminated food. Chicken meat has been known as an important vehicle to transmit Salmonella by the food supply chain. This study determined the prevalence, antimicrobial resistance, and genetic characteristics of Salmonella at different chicken slaughtering stages in East China. In total, 114 out of 200 (57%) samples were Salmonella positive, while Salmonella contamination was gradually increasing from the scalding and unhairing stage (17.5%) to the subdividing stage (70%) throughout the slaughtering. Whole-genome sequencing (WGS) was then performed to analyze the serotype, antimicrobial resistance gene profiles, and genetic relationship of all Salmonella isolates. The most common serotypes were S. Kentucky (51/114, 44.7%) and S. Enteritidis (37/114, 32.5%), which were distributed throughout the four slaughtering stages, and were also identified in the corresponding environments. The multilocus sequencerresponding resistance genes of S. Kentucky and S. Enteritidis, including tetA, floR, blaTEM-1B, strA/B, sul1/sul2, and gyrA (D87Y). Our study observed a high prevalence of Salmonella in the chicken slaughter line and identified the slaughtering environment as a main source of causing Salmonella cross-contamination during chicken slaughtering. Further studies will be needed to limit the transmission of Salmonella in the slaughterhouse. Copyright © 2020 Gu, Wang, Tian, Kang, Meng, Chen, Pan and Jiao.Bovine mycoplasmosis caused by Mycoplasma bovis results in pneumonia and mastitis in cattle. We previously demonstrated that the programmed death 1 (PD-1)/PD-ligand 1 (PD-L1) pathway is involved in immune dysfunction during M. check details bovis infection and that prostaglandin E2 (PGE2) suppressed immune responses and upregulated PD-L1 expression in Johne's disease, a bacterial infection in cattle. In this study, we investigated the role of PGE2 in immune dysfunction and the relationship between PGE2 and the PD-1/PD-L1 pathway in M. bovis infection. In vitro stimulation with M. bovis upregulated the expressions of PGE2 and PD-L1 presumably via Toll-like receptor 2 in bovine peripheral blood mononuclear cells (PBMCs). PGE2 levels of peripheral blood in infected cattle were significantly increased compared with those in uninfected cattle. Remarkably, plasma PGE2 levels were positively correlated with the proportions of PD-L1+ monocytes in M. bovis-infected cattle. Additionally, plasma PGE2 production in infected cattle was negatively correlated with M. bovis-specific interferon (IFN)-γ production from PBMCs. These results suggest that PGE2 could be one of the inducers of PD-L1 expression and could be involved in immunosuppression during M. bovis infection. In vitro blockade assays using anti-bovine PD-L1 antibody and a cyclooxygenase 2 inhibitor significantly upregulated the M. bovis-specific IFN-γ response. Our study findings might contribute to the development of novel therapeutic strategies for bovine mycoplasmosis that target PGE2 and the PD-1/PD-L1 pathway. Copyright © 2020 Goto, Konnai, Hirano, Kohara, Okagawa, Maekawa, Sajiki, Watari, Minato, Kobayashi, Gondaira, Higuchi, Koiwa, Tajima, Taguchi, Uemura, Yamada, Kaneko, Kato, Yamamoto, Toda, Suzuki, Murata and Ohashi.

Autoři článku: Freedmanmcwilliams4825 (Bateman Hesselberg)