Higginskirkland4724
Despite tight genetic compression, viral genomes are often organized into functional gene clusters, a modular structure that might favor their evolvability. This has greatly facilitated biotechnological developments such as the recombinant adeno-associated virus (AAV) systems for gene therapy. Following this lead, we endeavored to engineer the related insect parvovirus Junonia coenia densovirus (JcDV) to create addressable vectors for insect pest biocontrol. To enable safer manipulation of capsid mutants, we translocated the nonstructural (ns) gene cluster outside the viral genome. To our dismay, this yielded a virtually nonreplicable clone. We linked the replication defect to an unexpected modularity breach, as ns translocation truncated the overlapping 3' untranslated region (UTR) of the capsid transcript (vp). We found that the native vp 3' UTR is necessary for high-level VP production but that decreased expression does not adversely impact the expression of NS proteins, which are known replication effecto on host specificity. Our original construct proved to be nonfunctional. Fixing this defect led us to uncover that capsid proteins and their correct expression are essential for continued rolling-hairpin replication. This points to an intriguing link between replication and packaging, which might be shared with related viruses. This serendipitous discovery illustrates the power of synthetic biology approaches to advance our knowledge of biological systems.Uncharacterized viral genomes that encode circular replication-associated proteins of single-stranded DNA viruses have been discovered by metagenomics/metatranscriptomics approaches. Some of these novel viruses are classified in the newly formed family Genomoviridae. Here, we determined the host range of a novel genomovirus, SlaGemV-1, through the transfection of Sclerotinia sclerotiorum with infectious clones. Inoculating with the rescued virions, we further transfected Botrytis cinerea and Monilinia fructicola, two economically important members of the family Sclerotiniaceae, and Fusarium oxysporum. SlaGemV-1 causes hypovirulence in S. sclerotiorum, B. cinerea, and M. fructicola. SlaGemV-1 also replicates in Spodoptera frugiperda insect cells but not in Caenorhabditis elegans or plants. By expressing viral genes separately through site-specific integration, the replication protein alone was sufficient to cause debilitation. Our study is the first to demonstrate the reconstruction of a metagenomically discov plant metagenomes can be a valuable genetic resource when novel viruses are rescued and characterized for their host range.The extent to which viral genomic RNAs interact with host factors and contribute to host response and disease pathogenesis is not well known. Here, we report that the human RNA helicase DDX6 specifically binds to the viral most conserved RNA hairpin in the A3 element in the dengue 3' UTR, with nanomolar affinities. DDX6 CLIP confirmed the interaction in HuH-7 cells infected by dengue virus serotype 2. This interaction requires three conserved residues-Lys307, Lys367, and Arg369-as well as the unstructured extension in the C-terminal domain of DDX6. Interestingly, alanine substitution of these three basic residues resulted in RNA-independent ATPase activity, suggesting a mechanism by which RNA-binding and ATPase activities are coupled in DEAD box helicases. Furthermore, we applied a cross-omics gene enrichment approach to suggest that DDX6 is functionally related to cell cycle regulation and viral pathogenicity. Indeed, infected cells exhibited cell cycle arrest in G1 phase and a decrease in the early S phase.proaches to characterize a highly conserved interface of the RNA genome of DENV with a human factor named DDX6 in infected cells. The significance of our research is in identifying the mechanism for a viral strategy to alter host cell fates, which conceivably allows us to generate a model for live-attenuated vaccine and the design of new therapeutic reagent for dengue diseases.Classical swine fever virus (CSFV), a member of the genus Pestivirus of the family Flaviviridae, relies on host machinery to complete its life cycle. Previous studies have shown a close connection between virus infection and fatty acid biosynthesis, mainly regulated by fatty acid synthase (FASN). However, the molecular action of how FASN participates in CSFV replication remains to be elucidated. In this study, two chemical inhibitors of the fatty acid synthesis pathway [5-(tetradecyloxy)-2-furoic acid (TOFA) and tetrahydro-4-methylene-2R-octyl-5-oxo-3S-furancarboxylic acid (C75)] significantly impaired the late stage of viral propagation, suggesting CSFV replication required fatty acid synthesis. selleck kinase inhibitor We next found that CSFV infection stimulated the expression of FASN, whereas knockdown of FASN inhibited CSFV replication. Furthermore, confocal microscopy showed that FASN participated in the formation of replication complex (RC), which was associated with the endoplasmic reticulum (ER). Interestingly, CSFV NS4B intinteracts with NS4B to regulate CSFV replication that requires Rab18. Furthermore, we speculated that lipid droplet (LD) biosynthesis, indirectly regulated by FASN, ultimately promotes CSFV replication. Our results highlight a critical role for de novo fatty acid synthesis in CSFV infection, which might help control this devastating virus.Antibiotic resistance is one of the largest threats facing global health. Wastewater treatment plants are well-known hot spots for interaction between diverse bacteria, genetic exchange, and antibiotic resistance. Nonpathogenic bacteria theoretically act as reservoirs of antibiotic resistance subsequently transferring antibiotic resistance genes to pathogens, indicating that evolutionary processes occur outside clinical settings and may drive patterns of drug-resistant infections. We isolated and sequenced 100 bacterial strains from five wastewater treatment plants to analyze regional dynamics of antibiotic resistance in the California Central Valley. The results demonstrate the presence of a wide diversity of pathogenic and nonpathogenic bacteria, with an arithmetic mean of 5.1 resistance genes per isolate. Forty-three percent of resistance genes were located on plasmids, suggesting that large levels of gene transfer between bacteria that otherwise may not co-occur are facilitated by wastewater treatment. One of the strains detected was a Bacillus carrying pX01 and pX02 anthrax-like plasmids and multiple drug resistance genes.