Skinnerhenningsen2363
Hydrazone and oxime peptide ligations are catalyzed by arginine. HDAC inhibitors in clinical trials The catalysis is assisted intramolecularly by the side-chain guanidinium group. Hydrazone ligation in the presence of arginine proceeds efficiently in phosphate buffer at neutral pH but is particularly powerful in bicarbonate/CO2 buffer. In addition to acting as a catalyst, arginine prevents the aggregation of proteins during ligation. With its dual properties as a nucleophilic catalyst and a protein aggregation inhibitor, arginine hydrochloride is a useful addition to the hydrazone/oxime ligation toolbox.We report a unified total synthesis of five bufadienolides bufalin (1), bufogenin B (2), bufotalin (3), vulgarobufotoxin (4), and 3-(N-succinyl argininyl) bufotalin (5). After the steroidal ABCD ring 8 was produced, the D ring was cross-coupled with a 2-pyrone moiety and stereoselectively epoxidized to generate 6. TMSOTf promoted a stereospecific 1,2-hydride shift from 6 to establish the β-oriented 2-pyrone of 19. Functional group manipulations from 19 furnished 1-5, which potently inhibited cancer cell growth.The separation of oil-water emulsion using superliquiphobic/philic porous coated materials has attracted considerable attention for dealing with environmental pollution and resource recycling issues. The coatings used may lack adequate surface mechanical and chemical durability. This paper proposes a simple method without other modifications for separating the oil-water emulsion. A porous layer was fabricated by superhydrophilic Al2O3 particles, which could separate oil-water emulsions. The particle layer has the property of underwater superoleophobicity after prewetting. For the oil-in-water (O/W) emulsion separation, a 0.3 μm Al2O3 particle layer was used. This layer had a pore size less than about 1 μm to minimize oil flow and to obtain a purity of oil recovery greater than 99 wt %. For the water-in-oil (W/O) emulsion separation, a 40 μm Al2O3 superhydrophilic particle layer was used. Larger particles were used to provide a more porous surface to facilitate oil flow through the layer, resulting in a purity of water recovery purity greater than 99 wt %.Graphene oxide has shown exceptional properties in terms of water permeability and filtration characteristics. Here the suitability of graphene oxide membranes for the spatial separation of hydronium and hydroxide ions after photocatalytic water splitting is demonstrated. Instead of relying on classical size exclusion by adjusting the membrane laminates' interlayer spacings, nonmodified graphene oxide is used to exploit the presence of its natural functional groups and surface charges for filtration. Despite a significantly larger interlayer spacing inside the membrane compared with the size of the hydrated radii of the ions, highly asymmetric transport behavior and a 6 times higher mobility for hydronium than for hydroxide are observed. DFT simulations reveal that hydroxide ions are more prone to interact and stick to the functional groups of graphene oxide, while diffusion of hydronium ions through the membrane is less impeded and aligns well with the concept of the Grotthuss mechanism.Achieving two-dimensionally (2D) ordered surface wrinkle patterns is still challenging not only for the atomic-thick 2D materials but also in general for all soft surfaces. Normally disordered 2D wrinkle patterns on isotropic surfaces can be rendered via biaxial straining. Here, we report that the 1D and 2D ordered wrinkle patterns in 2D materials can be produced by sequential wrinkling controlled by thermal straining and vertical spatial confinement. The various hierarchical patterns in 2D materials generated by our method are highly periodic, and the hexagonal crystal symmetry is obeyed. More interestingly, these patterns can be maintained in suspended monolayers after delamination from the underlying surfaces which shows the great application potentials. Our new approach can simplify the patterning processes on 2D layered materials and reduce the risk of damage compared to conventional lithography methods, and numerous engineering applications that require nanoscale ordered surface texturing could be empowered.Area-selective deposition (ASD) offers tremendous advantages when compared with conventional patterning processes, such as the possibility of achieving three-dimensional features in a bottom-up additive fashion. Recently, ASD is gaining more and more attention from IC manufacturers and equipment and material suppliers. Through combination of self-assembled monolayer (SAM) surface passivation of the nongrowth substrate area and atomic layer deposition (ALD) on the growth area, ASD selective to the growth area can be achieved. With the purpose of screening SAM precursors to provide optimal passivation performance on SiO2, various siloxane precursors with different terminal groups and alkyl chains were investigated. Additionally, the surface dependence and growth inhibition of TiN ALD on -NH2, -CF3, and -CH3 terminations is investigated. We demonstrated the methyl termination of the SAM precursor combined with a C18 alkyl chain plays an important role in broadening the ALD selectivity window by suppressing precursor adsorption. Owing to the high surface coverage, excellent thermal stability and longer carbon chain length, an optimized trimethoxy(octadecyl)silane (TMODS) film deposited from liquid phase was able to provide a selectivity higher than 0.99 up to 20 nm ALD film deposited on hydroxyl-terminated Si oxide. The approach followed in this work can allow extending the ASD process window, and it is relevant for a wide variety of applications.By exploiting electron donor-acceptor (EDA) complexes between 1,4-dihydropyridines and N-amidopyridinium salts under visible light irradiation, we discovered that photoinduced intermolecular charge transfer induces a single-electron transfer event without requiring a photocatalyst for the facile functionalization of pyridines. The generality of this method is amenable to various types of 1,4-dihydropyridines radical precursors to generate structurally different radicals such as alkyl, acyl, and carbamoyl radicals, ultimately providing facile access to synthetically valuable C4-functionalized pyridines. A broad range of functional groups are well accommodated under mild and metal-free conditions, and the synthetic utility of the present method is showcased by the late-stage functionalization of a variety of biologically relevant pyridine-based compounds, pharmaceuticals, and peptide feedstocks.