Padgetthansen6785

Z Iurium Wiki

Verze z 5. 11. 2024, 15:38, kterou vytvořil Padgetthansen6785 (diskuse | příspěvky) (Založena nová stránka s textem „Although the stress response in eukaryotes depends on early events triggered in cells by environmental insults, long-term processes such as aging are also…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Although the stress response in eukaryotes depends on early events triggered in cells by environmental insults, long-term processes such as aging are also affected. The loss of cellular proteostasis greatly impacts aging, which is regulated by the balancing of protein synthesis and degradation systems. As translation is the input event in proteostasis, we decided to study the role of translational activity on cell lifespan. Our hypothesis was that a reduction on translational activity or specific changes in translation may increase cellular longevity. Using mutant strains of Schizosaccharomyces pombe and various stress conditions, we showed that translational reduction caused by phosphorylation of eukaryotic translation initiation factor 2 (eIF2) during the exponential growth phase enhances chronological lifespan (CLS). Furthermore, through next-generation sequence analysis, we found eIF2α phosphorylation-dependent translational activation of some specific genes, especially those involved in autophagy. This fact, together with the observed regulation of autophagy, points to a conserved mechanism involving general and specific control of translation and autophagy as mediators of the role of eIF2α phosphorylation in aging.This study aimed to investigate the role of long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in the development of ALF. We collected blood samples from patients with acute liver failure (ALF) and established an ALF mouse model induced by D-galactosamine/Lipopolysaccharide (D-GalN/LPS) for in vivo studies. Peripheral blood mononuclear cells (PMBCs) induced with LPS were isolated for in vitro experiments. Survival tests, histological analysis, and biochemical indicator assays were conducted. Luciferase assay was performed to determine the binding affinity between microRNA-139 (miR-139) and p53-upregulated modulator of apoptosis (PUMA). Expression of lncRNA NEAT1, enhancer of zeste homolog 2 (EZH2), and PUMA was upregulated, while the expression of miR-139 was downregulated in clinical samples and D-GalN/LPS induced ALF mouse model. LncRNA NEAT1 promoted the enrichment of H3K27me3 on the promoter region of miR-139 via EZH2, which led to suppression of miR-139. The inhibition of miR-139 resulted in the upregulation of its downstream target PUMA. The NEAT1/miR-139/PUMA pathway upregulated the production of pro-inflammatory cytokines, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β, thereby mediating the progression of ALF. In conclusion, silencing lncRNA NEAT1 upregulated the expression of miR-139 through EZH2, leading to the downregulation of PUMA, which alleviated the development of ALF.We previously reported the neuroprotective effects of (+)-balasubramide derived compound 3C, but its action on atherosclerosis in vivo remains unknown. 5-Ethynyluridine The study was designed to investigate the potential effects of 3C on atherogenesis and explore the possible underlying mechanisms. 3C ameliorated high-fat diet-induced body weight gain, hyperlipidemia, and atherosclerotic plaque burden in apolipoprotein E-deficient (ApoE-/-) mice after 10 weeks of treatment. 3C suppressed the expression of genes involved in triglyceride synthesis in liver. 3C prevented aortic inflammation as evidenced by reduction of adhesive molecule levels and macrophage infiltration. Mechanistic studies revealed that activation of AMP-activated protein kinase (AMPK) is central to the athero-protective effects of 3C. Increased AMPK activity by 3C resulted in suppressing interferon-γ (IFN-γ) induced activation of signal transducer and activator of transcription-1 (STAT1) and stimulator of interferon genes (STING) signaling pathways and downstream pro-inflammatory markers. Moreover, 3C inhibited ox-LDL triggered lipid accumulation and IFN-γ induced phenotypic switch toward M1 macrophage in RAW 264.7 cells. Our present data suggest that 3C prevents atherosclerosis via pleiotropic effects, including amelioration of lipid profiles, vascular inflammation and macrophage pro-inflammatory phenotype. 3C has the potential to be developed as a promising drug for atherosclerosis and related cardiovascular disease.Better understanding of the transcriptional regulatory network in acute promyelocytic leukemia (APL) cells is critical to illustrate the pathogenesis of other types of acute myeloid leukemia. Previous studies have primarily focused on the retinoic acid signaling pathway and how it is interfered with by promyelocytic leukemia/retinoic acid receptor-α (PML/RARα) fusion protein. However, this hardly explains how APL cells are blocked at the promyelocytic stage. Here, we demonstrated that C/EBPα bound and transactivated the promoter of long non-coding RNA NEAT1, an essential element for terminal differentiation of APL cells, through C/EBP binding sites. More importantly, PML/RARα repressed C/EBPα-mediated transactivation of NEAT1 through binding to NEAT1 promoter. Consistently, mutation of the C/EBP sites or deletion of retinoic acid responsive elements (RAREs) and RARE half motifs abrogated the PML/RARα-mediated repression. Moreover, silencing of C/EBPα attenuated ATRA-induced NEAT1 upregulation and APL cell differentiation. Finally, simultaneous knockdown of C/EBPα and C/EBPβ reduces ATRA-induced upregulation of C/EBPε and dramatically impaired NEAT1 activation and APL cell differentiation. In sum, C/EBPα binds and transactivates NEAT1 whereas PML/RARα represses this process. This study describes an essential role for C/EBPα in PML/RARα-mediated repression of NEAT1 and suggests that PML/RARα could contribute to the pathogenesis of APL through suppressing C/EBPα targets.Novel biomarkers are needed to accelerate the diagnosis and treatment of endometriosis. We performed RNA sequencing to explore the expression profiles of exosomal circular RNAs (circRNAs), microRNAs (miRNAs) and mRNAs in patients with ovarian endometriomas, eutopic endometria and normal endometria. Differentially expressed genes between the different pairs of groups were analyzed and functionally annotated. Then, miRNA-target RNA pairs were identified, competing endogenous RNA (ceRNA) scores were calculated, gene expression characteristics were determined, and these parameters were used to construct an exosomal ceRNA network. We identified 36 candidate hub genes with high degrees of gene connectivity. We also topologically analyzed the ceRNA network to obtain a hub ceRNA network of circRNAs with the highest closeness and ceRNA efficiency. Twelve genes overlapped between the 36 candidate hub genes and the genes in the hub ceRNA network. These 12 genes were considered to be exosomal RNA-based biomarkers, and circ_0026129/miRNA-15a-5p/ATPase H+ transporting V1 subunit A (ATP6V1A) were at the center of the ceRNA network.

Autoři článku: Padgetthansen6785 (Kramer Daley)