Ashbyzamora5180

Z Iurium Wiki

Verze z 5. 11. 2024, 14:48, kterou vytvořil Ashbyzamora5180 (diskuse | příspěvky) (Založena nová stránka s textem „In recent years, the problem of overheating in summer has been of great concern. Pavements are continuously exposed to solar radiation, and because of high…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In recent years, the problem of overheating in summer has been of great concern. Pavements are continuously exposed to solar radiation, and because of high temperatures, pavement temperatures reach 60 to 70 °C. This potential low-grade heat has been unused. Cement-based composites with thermoelectric properties can convert this low-grade heat to useful electrical energy. The importance of this green technology for generating renewable energy and sustainable development has been widely accepted and noticed. However, the power factor of current cement-based composites is too low, and harvesting low-grade heat on a large scale and at low cost requires improving the thermoelectric properties of cement-based composites. In this paper, we present a method to increase the electrical conductivity of ZnO and thus improve the thermoelectric properties of cement-based composites by defect engineering, obtaining a high power factor of 224 μWm-1 K-2 at 70 °C, a record value recently reported for thermoelectric cement-based composites. Zinc oxide powder was treated with a reducing atmosphere to increase the content of oxygen defects and thus improve the electrical conductivity. selleck products Pretreated ZnO powder of 5.0 and 10.0 wt % expanded graphite were added to the cement matrix. The ZnO/expanded graphite cement-based composites were made and tested for their thermoelectric properties using a dry pressing process, which exhibited excellent thermoelectric properties. The result showed high conductivity (12.78 S·cm-1), a high Seebeck coefficient (-419 μV/°C), a high power factor (224 μWm-1 K-2), and a high figure of merit value (8.7 × 10-3), which facilitate future large-scale applications. Using the cement-based composites to lay a road of 1 km in length and 10 m in width, 35.2 kW·h of electricity can be collected in 8 h. This study will inspire how to improve thermoelectric performance of cement-based composites.We investigate all-inorganic perovskite CsPbxSn1-xBr3 thin films to determine the variations in the band gap and electronic structure associated with the Pb/Sn ratio. We observe that the band gap can be tuned between 1.86 eV (x = 0) and 2.37 eV (x = 1). Intriguingly, this change is nonlinear in x, with a bowing parameter of 0.9 eV; furthermore, a slight band gap narrowing is found for low Pb content (minimum x ∼ 0.3). The wide tunability of the band gap makes CsPbxSn1-xBr3 a promising material, e.g., for a wide-gap subcell in tandem applications or for color-tunable light-emitting diodes. Employing photoelectron spectroscopy, we show that the valence band varies with the Pb/Sn ratio, while the conduction band is barely affected.Optical micro/nanofibers (MNFs) can be applied for ultrasensitive tactile sensing with fast response and compact size, which are attractive for restoring tactile information in minimally invasive robotic surgery and tissue palpation. Herein, we present a compact tactile sensor (CTS) with a diameter of 1.5 mm enabled by an optical MNF. The CTS provides continuous readouts for high-fidelity transduction of touch and pressure stimuli into interpretable optical signals, which permit instantaneous sensing of contact and pressure with pressure-sensing sensitivity as high as 0.108 mN-1 and a resolution of 0.031 mN. Working in pressing mode, the CTS can discriminate the difference in the hardness of two poly(dimethylsiloxane) (PDMS) slats (with shore A of 36 and 40) directly, a hardness resolving ability even beyond the human hands. Benefitting from the fast response feature, the CTS can also be operated in either scanning or tapping mode, making it feasible for hardness identification by analyzing the shape of the response curve. As a proof of concept, the hardness discrimination of a pork liver and an adductor muscle was experimentally demonstrated. Such MNF-enabled compact tactile sensors may pave the way for hardness sensing in tissue palpation, surgical robotics, and object identification.Many research groups have been interested in the quartz crystal microbalance (QCM)-based gas sensors due to their superb sensitivity originated from direct mass sensing at the ng level. Despite such high sensitivities observed from QCM sensors, their ability to identify gas compounds still needs to be enhanced. Herein, we report a highly facile method that utilizes microcolumns integrated on a QCM gas-responsive system with enhanced chemical selectivity for sensing and ability to identify volatile organic compound single gases. Graphene oxide (GO) flakes are coated on the QCM electrode to substantially increase the adsorption of gas molecules, and periodic polydimethylsiloxane microcolumns with micrometer-scale width and height were installed on the GO-coated QCM electrode. The observed frequency shifts upon sensing of various single gas molecules (such as ethanol, acetone, hexane, etc.) can be analyzed accurately using a simple exponential model. The QCM sensor system with and without the microcolumn both exhibited high detection response values above 50 ng/cm2 for sensing of the gases. Notably, the QCM sensor equipped with the microcolumn features gas identification ability, which is observed as distinct diverging behavior of time constants upon detection of different gases caused by the difference in diffusional transfer of molecules through the microcolumns. For example, the difference in the calculated time constant between ethanol and acetone increased from 22.6 to 92.1 s after installation of the microcolumn. This approach provides an easy and efficient method for identification of single gases, and it may be applied in various advanced sensor systems to enhance their gas selectivity.Dopamine D2 receptors (D2Rs) are major targets in the treatment of psychiatric and neurodegenerative diseases. As with many other G protein-coupled receptors (GPCRs), D2Rs interact within the cellular membrane, leading to a transient receptor homo- or heterodimerization. These interactions are known to alter ligand binding, signaling, and receptor trafficking. Bivalent ligands are ideally suited to target GPCR dimers and are composed of two pharmacophores connected by a spacer element. If properly designed, bivalent ligands are able to engange the two orthosteric binding sites of a GPCR dimer simultaneously. Taking advantage of previously developed ligands for heterodimers of D2R and the neurotensin receptor 1 (NTSR1), we synthesized homobivalent ligands targeting D2R. Employing bioluminescence resonance energy transfer, we found that the bivalent ligands 3b and 4b comprising a 92-atom spacer are able to foster D2R-homodimerization while simultaneously reducing interactions of D2R with NTSR1. Both receptors are coexpressed in the central nervous system and involved in important physiological processes.

Autoři článku: Ashbyzamora5180 (Ahmed McGuire)