Garrisonosman0003
The diminazene aceturate (C14H15N7.2C4H7NO3) is a chemotherapeutic agent with more than six decades of use, however more studies regarding its toxicity still need to be performed. Thus, the present study determined the acute toxicity (14 days) of diminazene acetate (DIZE) in male and female swiss mice by changes in body mass, food consumption, biochemical and hematological parameters, locomotor activity and motor coordination. DIZE was administered at a single dose (1000 and 2000 mg/kg) orally. In addition, in vitro antioxidant capacity, hemolytic activity, toxicity in Artemia salina and in silico evaluation were also performed. The results obtained include several signs of toxicity (hypoactivity, loss of the straightening reflex and tachycardia), reduction of behavioral activity (locomotor activity and motor coordination) and significant changes (p less then 0.05) in biochemical and hematological parameters. According to the in silico study, the DIZE can be classified based on the mean lethal dose (LD50) in category 4 (300 mg/kg less then LD50 ≤ 2000 mg/kg, ProTox-II) or 3 (50 mg/kg less then LD50 ≤ 300 mg/kg, AdmetSAR 1.0). Additionally, DIZE (30.3-969.9 nM) was not toxic to A. salina in the first 48 hours of treatment and was not cytotoxic to rat red blood cells after induced hemolysis. In vitro results indicated low antioxidant capacity against DPPH• and ABTS•+ radicals. Therefore, DIZE induces several adverse effects with influence on the central nervous system, changes in hematological and biochemical parameters and even mortality at the highest dose. However, absence of toxicity was observed in A. salina and rats red blood cells.Ultraviolet B (UVB) irradiation causes free radical production, increase inflammation and oxidative stress, thus, supporting the use of antioxidants by topical administration as therapeutic approaches. Quercetin (QC) is a flavonoid with antioxidant activity, however, high liposolubility makes it difficult to remain in the viable skin layer. Thus, this study evaluated whether microencapsulation of QC would enhance its activity in comparison with the same dose of free QC (non-active dose) and unloaded-microcapsules added in formulation for topical administration in a mouse model of UVB irradiation targeting the skin. Topical formulation containing Quercetin-loaded microcapsules (TFcQCMC) presents physico-chemical (colour, consistence, phase separation and pH) and functional antioxidant stability at 4 °C, room temperature and 40 °C for 6 months. TFcQCMC inhibited the UVB-triggered depletion of antioxidants observed by GSH (reduced glutathione), ability to reduce iron, ability to scavenge 2,2'-azinobis radical and catalase activity. TFcQCMC also inhibited markers of oxidation (lipid hydroperoxides and superoxide anion production). Concerning inflammation, TFcQCMC reduced the production of inflammatory cytokines, matrix metalloproteinase-9 activity, skin edoema, collagen fibre damage, myeloperoxidase activity/neutrophil recruitment, mast cell and sunburn cell counts. The pharmacological activity of TFcQCMC was not shared by the same pharmaceutical form containing the same dose of free QC or unloaded control microcapsules.Introduction Important changes in the treatment of prostate cancer have taken place in recent years. Non-metastatic castration-resistant prostate cancer (nmCRPC) has been clinically delineated. In this setting, three drugs have been approved in high-risk disease apalutamide, enzalutamide and darolutamide.Areas coveredThis manuscript aims to profile darolutamide, its clinical development, pharmacologic properties, efficacy and safety. We presented the results of published clinical studies, but we also investigated ongoing ones.Expert opinion An indirect comparison with the other two aforementioned drugs emerged. While the clinical efficacy is comparable, the toxicity profile is different for darolutamide, resulting in greater tolerance. We must wait for the results of the trials that study darolutamide in hormone-sensitive disease, both in the metastatic phase and in the localized phase. Clinical experience will also be important to determine ever more personalized treatments for patients.We developed a biocompatible splenic vector for a DNA vaccine against melanoma. The splenic vector is a ternary complex composed of plasmid DNA (pDNA), biodegradable dendrigraft poly-L-lysine (DGL), and γ-polyglutamic acid (γ-PGA), the selective uptake of which by the spleen has already been demonstrated. The ternary complex containing pDNA encoding luciferase (pCMV-Luc) exhibited stronger luciferase activity for RAW264.7 mouse macrophage-like cells than naked pCMV-Luc. Although the ternary complex exhibited strong luciferase activity in the spleen after its tail vein injection, luciferase activity in the liver and spleen was significantly decreased by a pretreatment with clodronate liposomes, which depleted macrophages in the liver and spleen. These results indicate that the ternary complex is mainly transfected in macrophages and is a suitable formulation for DNA vaccination. We applied the ternary complex to a pUb-M melanoma DNA vaccine. HygromycinB The ternary complex containing pUb-M suppressed the growth of melanoma and lung metastasis by B16-F10 mouse melanoma cells. We also examined the acute and liver toxicities of the pUb-M ternary complex at an excess pDNA dose in mice. All mice survived the injection of the excess amount of the ternary complex. Liver toxicity was negligible in mice injected with the excess amount of the ternary complex. In conclusion, we herein confirmed that the ternary complex was mainly transfected into macrophages in the spleen after its tail vein injection. We also showed the prevention of melanoma metastasis by the DNA vaccine and the safety of the ternary complex.Transarterial chemoembolization is a standard treatment for intermediate-stage hepatocellular carcinoma (HCC). This study evaluated the anti-tumor effect of the semi-interpenetrating network (IPN) hydrogel as a novel embolic material for trans-portal vein chemoembolization (TPVE) in vivo. A nude mice orthotopic HCC model was established, followed by TPVE using IPN hydrogel loaded with or without cisplatin. Portal vein blockade was visualized by MRI and the development of tumor was monitored by IVIS Spectrum Imaging. Tumor proliferation and angiogenesis were evaluated by Ki67 and CD34 staining respectively. Intra-tumor caspase 3, Akt, ERK1/2, and VEGF activation were detected by Western Blot. 18 F-FMISO uptake was evaluated by microPET-MRI scanning. IPN hydrogel first embolized the left branch of portal vein within 24 hours and further integrated into the intra-tumor vessels during 2 weeks after the treatment. Mice treated with cisplatin-loaded hydrogels exhibited a significant decrease in tumor growth, along with lower plasma AFP levels as compared to hydrogel-treated and untreated tumor-bearing mice.