Holmmays2988

Z Iurium Wiki

Verze z 4. 11. 2024, 21:49, kterou vytvořil Holmmays2988 (diskuse | příspěvky) (Založena nová stránka s textem „Deep neural networks have been widely explored and utilised as a useful tool for feature extraction in computer vision and machine learning. It is often ob…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Deep neural networks have been widely explored and utilised as a useful tool for feature extraction in computer vision and machine learning. It is often observed that the last fully connected (FC) layers of convolutional neural network possess higher discrimination power as compared to the convolutional and maxpooling layers whose goal is to preserve local and low-level information of the input image and down sample it to avoid overfitting. Inspired from the functionality of local binary pattern (LBP) operator, this paper proposes to induce discrimination into the mid layers of convolutional neural network by introducing a discriminatively boosted alternative to pooling (DBAP) layer that has shown to serve as a favourable replacement of early maxpooling layer in a convolutional neural network (CNN). A thorough research of the related works show that the proposed change in the neural architecture is novel and has not been proposed before to bring enhanced discrimination and feature visualisation power achieved from the mid layer features. The empirical results reveal that the introduction of DBAP layer in popular neural architectures such as AlexNet and LeNet produces competitive classification results in comparison to their baseline models as well as other ultra-deep models on several benchmark data sets. In addition, better visualisation of intermediate features can allow one to seek understanding and interpretation of black box behaviour of convolutional neural networks, used widely by the research community.Stock market prediction is a challenging task as it requires deep insights for extraction of news events, analysis of historic data, and impact of news events on stock price trends. The challenge is further exacerbated due to the high volatility of stock price trends. However, a detailed overview that discusses the overall context of stock prediction is elusive in literature. To address this research gap, this paper presents a detailed survey. selleck All key terms and phases of generic stock prediction methodology along with challenges, are described. A detailed literature review that covers data preprocessing techniques, feature extraction techniques, prediction techniques, and future directions is presented for news sensitive stock prediction. This work investigates the significance of using structured text features rather than unstructured and shallow text features. It also discusses the use of opinion extraction techniques. In addition, it emphasizes the use of domain knowledge with both approaches of textual feature extraction. Furthermore, it highlights the significance of deep neural network based prediction techniques to capture the hidden relationship between textual and numerical data. This survey is significant and novel as it elaborates a comprehensive framework for stock market prediction and highlights the strengths and weaknesses of existing approaches. It presents a wide range of open issues and research directions that are beneficial for the research community.Modern software development and operations rely on monitoring to understand how systems behave in production. The data provided by application logs and runtime environment are essential to detect and diagnose undesired behavior and improve system reliability. However, despite the rich ecosystem around industry-ready log solutions, monitoring complex systems and getting insights from log data remains a challenge. Researchers and practitioners have been actively working to address several challenges related to logs, e.g., how to effectively provide better tooling support for logging decisions to developers, how to effectively process and store log data, and how to extract insights from log data. A holistic view of the research effort on logging practices and automated log analysis is key to provide directions and disseminate the state-of-the-art for technology transfer. In this paper, we study 108 papers (72 research track papers, 24 journals, and 12 industry track papers) from different communities (e.g., machine learning, software engineering, and systems) and structure the research field in light of the life-cycle of log data. Our analysis shows that (1) logging is challenging not only in open-source projects but also in industry, (2) machine learning is a promising approach to enable a contextual analysis of source code for log recommendation but further investigation is required to assess the usability of those tools in practice, (3) few studies approached efficient persistence of log data, and (4) there are open opportunities to analyze application logs and to evaluate state-of-the-art log analysis techniques in a DevOps context.Global average temperature had been significantly increasing during the past century, mainly due to the growing rates of greenhouse gas (GHG) emissions, leading to a global warming problem. Many research works indicated other causes of this problem, such as the anthropogenic heat flux (AHF). Cloud computing (CC) data centers (DCs), for example, perform massive computational tasks for end users, leading to emit huge amounts of waste heat towards the surrounding (local) atmosphere in the form of AHF. Out of the total power consumption of a public cloud DC, nearly 10% is wasted in the form of heat. In this paper, we quantitatively and qualitatively analyze the current state of AHF emissions of the top three cloud service providers (i.e., Google, Azure and Amazon) according to their average energy consumption and the global distribution of their DCs. In this study, we found that Microsoft Azure DCs emit the highest amounts of AHF, followed by Amazon and Google, respectively. We also found that Europe is the most negatively affected by AHF of public DCs, due to its small area relative to other continents and the large number of cloud DCs within. Accordingly, we present mean estimations of continental AHF density per square meter. Following our results, we found that the top three clouds (with waste heat at a rate of 1,720.512 MW) contribute an average of more than 2.8% out of averaged continental AHF emissions. Using this percentage, we provide future trends estimations of AHF densities in the period [2020-2100]. In one of the presented scenarios, our estimations predict that by 2100, AHF of public clouds DCs will reach 0.01 Wm-2.

Autoři článku: Holmmays2988 (Skafte Lyng)