Danielploug2767

Z Iurium Wiki

Verze z 4. 11. 2024, 21:47, kterou vytvořil Danielploug2767 (diskuse | příspěvky) (Založena nová stránka s textem „Communication between cells and their environment is carried out through the plasma membrane including the action of most pharmaceutical drugs. Although su…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Communication between cells and their environment is carried out through the plasma membrane including the action of most pharmaceutical drugs. Although such a communication typically involves specific binding of a messenger to a membrane receptor, the biophysical state of the lipid bilayer strongly influences the outcome of this interaction. Sphingolipids constitute an important part of the lipid membrane, and their mole fraction modifies the biophysical characteristics of the membrane. Here, we describe methods that can be used for measuring how sphingolipid accumulation alters the compactness, microviscosity, and dipole potential of the lipid bilayer and the mobility of membrane components.Fluorescence-based techniques have been an integral factor in the study of cellular and model membranes. Fluorescence studies carried out on model membranes have provided valuable structural information and have helped reveal mechanistic detail regarding the formation and properties of ordered lipid domains, commonly known as lipid rafts. this website This chapter focuses on four techniques, based on fluorescence spectroscopy or microscopy, which are commonly used to analyze lipid rafts. The techniques described in this chapter may be used in a variety of ways and in combination with other techniques to provide valuable information regarding lipid order and domain formation, especially in model membranes.The use of steady-state and time-resolved fluorescence spectroscopy to study sterol and sphingolipid-enriched lipid domains as diverse as the ones found in mammalian and fungal membranes is herein described. We first address how to prepare liposomes that mimic raft-containing membranes of mammalian cells and how to use fluorescence spectroscopy to characterize the biophysical properties of these membrane model systems. We further illustrate the application of Förster resonance energy transfer (FRET) to study nanodomain reorganization upon interaction with small bioactive molecules, phenolic acids, an important group of phytochemical compounds. This methodology overcomes the resolution limits of conventional fluorescence microscopy allowing for the identification and characterization of lipid domains at the nanoscale.We continue by showing how to use fluorescence spectroscopy in the biophysical analysis of more complex biological systems, namely the plasma membrane of Saccharomyces cerevisiae yeast cells and the necessary adaptations to the filamentous fungus Neurospora crassa , evaluating the global order of the membrane, sphingolipid-enriched domains rigidity and abundance, and ergosterol-dependent properties.The study of the structure and dynamics of membrane domains in vivo is a challenging task. However, major advances could be achieved through the application of microscopic and spectroscopic techniques coupled with the use of model membranes, where the relations between lipid composition and the type, amount and properties of the domains present can be quantitatively studied.This chapter provides protocols to study membrane organization and visualize membrane domains by fluorescence microscopy both in artificial membrane and living cell models of Gaucher Disease (GD ). We describe a bottom-up multiprobe methodology, which enables understanding how the specific lipid interactions established by glucosylceramide, the lipid that accumulates in GD , affect the biophysical properties of model and cell membranes, focusing on its ability to influence the formation, properties and organization of lipid raft domains. In this context, we address the preparation of (1) raft-mimicking giant unilamellar vesicles labeled with a combination of fluorophores that allow for the visualization and comprehensive characterization of those membrane domains and (2) human fibroblasts exhibiting GD phenotype to assess the biophysical properties of biological membrane in living cells using fluorescence microscopy.The prevailing mechanism of action of chemotherapeutic drugs has been challenged by the role of ceramide, a second messenger, shown to induce apoptosis, differentiation, growth arrest, senescence, and autophagy in different cells (Chabner BA, Roberts TG Jr, Nat Rev Cancer 565-72, 2005; Jacobi J et al, Cell Signal 2952-61, 2017; Rotolo J et al, J Clin Invest 1221786-1790, 2012; Truman JP et al, PLoS One 5e12310, 2010). Certain chemotherapeutic drugs activate the acid sphingomyelinase (ASMase)/ceramide pathway, generating ceramide in the tumor endothelium and this microvascular dysfunction is crucial for the tumor response. Ceramide has fusigenic properties and as such, when generated within the plasma membrane, initiates the oligomerization of ceramide-and cholesterol-rich domains in the outer leaflet of the plasma membrane, leading to the formation of ceramide-rich microdomains/platforms (CRP) (Jacobi J et al, Cell Signal 2952-61, 2017; Truman JP et al, PLoS One 5e12310, 2010; van Hell AJ et al, Cell Signal 3486-91, 2017; Hajj C, Haimovitz-Friedman A, Handb Exp Pharmacol 216115-130, 2013) known as "signaling platform." This chapter will discuss the generation, detection, and quantitation of CRP and their possible modulation in endothelial cells, in vitro and in vivo in response to certain chemotherapeutic drugs.Ceramide can be generated on cell surfaces by the activity of the acid sphingomyelinase. The unique biophysical properties of ceramide result in the self-formation of small ceramide-enriched membrane domains that spontaneously fuse to large ceramide-enriched membrane macrodomains. The present chapter describes how these domains can be labeled and thereby visualized in cells. Further, the chapter provides protocols how ceramide and sphingosine can be quantified on the surface of cells and organs.Numerous G protein-coupled receptors (GPCRs) and GPCR-signaling molecules reside in lipid rafts and thus, are inherently regulated in these microdomains. However, the limitations of current methods to investigate lipid raft biology and GPCR activity in situ have hindered the complete understanding of the molecular underpinnings of GPCR trafficking and signaling, especially in the whole organism. This book chapter details an innovative in vivo approach to study the crucial role of lipid rafts on the workings of GPCRs in the mouse kidney. This protocol involves the use of a modified mini osmotic pump to deliver an agent that selectively disrupts the lipid raft in the kidney.

Autoři článku: Danielploug2767 (Harrell Washington)