Krusedamgaard6931
This article provides current clinical, diagnostic, and therapeutic considerations relevant to the hospitalist for both acute and chronic mucocutaneous GVHD. Optimal inpatient management of these diseases requires an interdisciplinary team.
This article provides current clinical, diagnostic, and therapeutic considerations relevant to the hospitalist for both acute and chronic mucocutaneous GVHD. Optimal inpatient management of these diseases requires an interdisciplinary team.Preclinical data suggest that a "prime-boost" vaccine regimen using a target-expressing lentiviral vector for priming, followed by a recombinant protein boost, may be effective against cancer; however, this strategy has not been evaluated in a clinical setting. CMB305 is a prime-boost vaccine designed to induce a broad anti-NY-ESO-1 immune response. It is composed of LV305, which is an NY-ESO-1 expressing lentiviral vector, and G305, a recombinant adjuvanted NY-ESO-1 protein. This multicenter phase 1b, first-in-human trial evaluated CMB305 in patients with NY-ESO-1 expressing solid tumors. Safety was examined in a 3 + 3 dose-escalation design, followed by an expansion with CMB305 alone or in a combination with either oral metronomic cyclophosphamide or intratumoral injections of a toll-like receptor agonist (glucopyranosyl lipid A). Of the 79 patients who enrolled, 81.0% had sarcomas, 86.1% had metastatic disease, and 57.0% had progressive disease at study entry. The most common adverse events were fatigue (34.2%), nausea (26.6%), and injection-site pain (24.1%). In patients with soft tissue sarcomas, a disease control rate of 61.9% and an overall survival of 26.2 months (95% CI, 22.1-NA) were observed. CMB305 induced anti-NY-ESO-1 antibody and T-cell responses in 62.9% and 47.4% of patients, respectively. This is the first trial to test a prime-boost vaccine regimen in patients with advanced cancer. This approach is feasible, can be delivered safely, and with evidence of immune response as well as suggestion of clinical benefit.Expressed by cancer stem cells of various epithelial cell origins and hepatocellular carcinoma (HCC), CD133 is an attractive therapeutic target for HCC. The marker CD133 is highly expressed in endothelial progenitor cells (EPC). EPCs circulate in increased numbers in the peripheral blood of patients with highly vascularized HCC and contribute to angiogenesis and neovascularization. This phase II study investigated CD133-directed chimeric antigen receptor (CAR) T (CART-133) cells in adults with HCC. Patients with histologically confirmed and measurable advanced HCC and adequate hematologic, hepatic, and renal functions received CART-133 cell infusions. The primary endpoints were safety in phase I and progression-free survival (PFS) and overall survival (OS) in phase II. Other endpoints included biomarkers for CART-133 T cell therapy. Between June 1, 2015, and September 1, 2017, this study enrolled 21 patients who subsequently received CART-133 T cells across phases I and II. The median OS was 12 months (95% CId at ClinicalTrials.gov (NCT02541370).Our previous study has identified intratumoral CD103+CD8+ T cells as a favorable prognostic factor in gastric cancer. However, the significance of CD103+CD4+ T cells in gastric cancer hasn't yet been elucidated. Quizartinib cost Here, we aimed to investigate the clinical significance and phenotype characteristics of intratumoral CD103+CD4+ T cells in gastric cancer. In our study, 469 formalin-fixed and paraffin-embedded samples and 24 fresh tissue specimens of patients with gastric cancer from Zhongshan Hospital were included. We manifested that intratumoral CD103+CD4+ T cells in gastric cancer predicted poor overall survival and inferior responsiveness to fluorouracil-based ACT. The density and phenotypic characteristics of CD103+CD4+ T cells in gastric cancer were detected by immunohistochemistry and flow cytometry, which showed that CD103+CD4+ T cells exhibited an immunosuppressive phenotype and higher retention capacity in tumor tissues. Furthermore, increased CD103+CD4+ T cells contributed to CD8+T cell dysfunction with decreased granzyme B (GZMB), interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α) and perforin (PRF-1) expression in gastric cancer. Overall, this study revealed that intratumoral CD103+CD4+T cell infiltration defined immunoevasive contexture and predicted poor prognosis and inferior responsiveness to fluorouracil-based ACT. Therefore, we recommended that CD103+CD4+ T cells might be a potential immunotherapeutic target for gastric cancer.Circular RNAs (circRNAs) are a class of non-coding RNAs broadly expressed in cells of various species. However, the contributions and molecular mechanisms of circRNAs to hepatocellular carcinoma (HCC) remain largely unknown. In the present study, we compared the expression of circRNAs between five paired HCC and adjacent noncancerous liver (ANL) tissues by using RNA-sequencing (RNA-seq). circRASGRF2 (a circRNA located on chromosome 5 and derived from RASGRF2, hsa_circ_0073181) was identified and validated by quantitative reverse transcriptase PCR. The role of circRASGRF2 in HCC progression was assessed both in vitro and in vivo. Mechanistically, RNA immunoprecipitation and luciferase reporter assays were performed to confirm the interaction between circRASGRF2 and miR-1224 in HCC. circRASGRF2 was found to be significantly upregulated in HCC tissues and HCC cell lines compared with paired ANL tissues and normal cells. Our in vivo and in vitro data indicated that knockdown of circRASGRF2 inhibits the proliferation and migration of HCC cells. Mechanistically, we found that circRASGRF2 could promote the expression of focal adhesion kinase (FAK) by sponging miR-1224. Our data showed that circRASGRF2 is a central component linking circRNAs to progression of HCC, making it a potential therapeutic target.Accumulating studies highlight the role of long noncoding RNAs (lncRNAs)/microRNAs (miRNAs)/messenger RNAs (mRNAs) as important regulatory networks in various human cancers, including thyroid cancer (TC). This study aimed to investigate a novel regulatory network dependent on lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in relation to TC development. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were initially employed to detect the expression of MALAT1, insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), and myelocytomatosis (MYC) in TC cells. Interactions among MALAT1, miR-204, and IGF2BP2 were then identified in vitro. The biological processes of proliferation, migration, invasion, and apoptosis were evaluated in vitro via gain- and loss-of-function experiments, followed by in vivo validation using xenograft mice. Our data indicated that MALAT1 and IGF2BP2 were highly expressed, while miR-204 was poorly expressed in TC. IGF2BP2 was verified as a target of miR-204.