Parkskatz9965
Nitric oxide (NO) is an important antimicrobial effector produced by the host innate immune system to counteract invading pathogens. To survive and establish a successful infection, a fulminating human pathogen Vibrio vulnificus expresses the hmpA gene encoding an NO dioxygenase in an NO-responsive manner. In this study, we identified an Rrf2-family transcriptional regulator NsrR that is predicted to contain the Fe-S cluster coordinated by three cysteine residues. Transcriptome analysis showed that NsrR controls the expression of multiple genes potentially involved in nitrosative stress responses. Particularly, NsrR acts as a strong repressor of hmpA transcription and relieves the repression of hmpA upon exposure to NO. Notably, nsrR and hmpA are transcribed divergently, and their promoter regions overlap with each other. Molecular biological analyses revealed that NsrR directly binds to this overlapping promoter region, which is alleviated by loss of the Fe-S cluster, leading to the subsequent derepression of hmpA under nitrosative stress. We further found that a leucine-responsive regulatory protein (Lrp) negatively regulates hmpA in an NsrR-dependent manner by directly binding to the promoter region, presumably resulting in a DNA conformation change to support the repression by NsrR. Meanwhile, a cyclic AMP receptor protein (CRP) positively regulates hmpA probably through repression of nsrR and lrp by directly binding to each promoter region in a sequential cascade. Altogether, this collaborative regulation of NsrR along with Lrp and CRP enables an elaborate control of hmpA transcription, contributing to survival under host-derived nitrosative stress and thereby the pathogenesis of V. vulnificus.The effects of the interplay of copper(II) and manganese(II) ions on growth, morphology and itaconic acid formation was investigated in a high-producing strain of Aspergillus terreus (NRRL1960), using carbon sources metabolized either mainly via glycolysis (D-glucose, D-fructose) or primarily via the pentose phosphate shunt (D-xylose, L-arabinose). Limiting Mn2+ concentration in the culture broth is indispensable to obtain high itaconic acid yields, while in the presence of higher Mn2+ concentrations yield decreases and biomass formation is favored. However, this low yield in the presence of high Mn2+ ion concentrations can be mitigated by increasing the Cu2+ concentration in the medium when D-glucose or D-fructose is the growth substrate, whereas this effect was at best modest during growth on D-xylose or L-arabinose. A. terreus displays a high tolerance to Cu2+ which decreased when Mn2+ availability became increasingly limiting. Under such conditions biomass formation on D-glucose or D-fructose could be sustained at concentrations up to 250 mg L-1 Cu2+, while on D-xylose- or L-arabinose biomass formation was completely inhibited at 100 mg L-1. High (>75%) specific molar itaconic acid yields always coincided with an "overflow-associated" morphology, characterized by small compact pellets ( less then 250 μm diameter) and short chains of "yeast-like" cells that exhibit increased diameters relative to the elongated cells in growing filamentous hyphae. At low concentrations (≤1 mg L-1) of Cu2+ ions, manganese deficiency did not prevent filamentous growth. learn more Mycelial- and cellular morphology progressively transformed into the typical overflow-associated one when external Cu2+ concentrations increased, irrespective of the available Mn2+. Our results indicate that copper ions are relevant for overflow metabolism and should be considered when optimizing itaconic acid fermentation in A. terreus.Candida albicans is the most common fungal pathogen. Recently, drug resistance of C. albicans is increasingly severe. Hsp90 is a promising antifungal target to overcome this problem. To evaluate the effects of Hsp90 inhibitor ganetespib on the inhibition of azole-resistant C. albicans, the microdilution checkerboard method was used to measure the in vitro synergistic efficacy of ganetespib. The XTT/menadione reduction assay, microscopic observation, and Rh6G efflux assay were established to investigate the effects of ganetespib on azole-resistant C. albicans biofilm formation, filamentation, and efflux pump. Real-time RT-PCR analysis was employed to clarify the mechanism of antagonizing drug resistance. The in vivo antifungal efficacy of ganetespib was determined by the infectious model of azole-resistant C. albicans. Ganetespib showed an excellent synergistic antifungal activity in vitro and significantly inhibited the fungal biofilm formation, whereas it had no inhibitory effect on fungal hypha formation. Expression of azole-targeting enzyme gene ERG11 and efflux pump genes CDR1, CDR2, and MDR1 was significantly down-regulated when ganetespib was used in combination with FLC. In a mouse model infected with FLC-resistant C. albicans, the combination of ganetespib and FLC effectively reversed the FLC resistance and significantly decreased the kidney fungal load of mouse.Cell death is a process that can be divided into three morphological patterns apoptosis, autophagy and necrosis. In fungi, cell death is induced in response to intracellular and extracellular perturbations, such as plant defense molecules, toxins and fungicides, among others. Ustilago maydis is a dimorphic fungus used as a model for pathogenic fungi of animals, including humans, and plants. Here, we reconstructed the transcriptional regulatory network of U. maydis, through homology inferences by using as templates the well-known gene regulatory networks (GRNs) of Saccharomyces cerevisiae, Aspergillus nidulans and Neurospora crassa. Based on this GRN, we identified transcription factors (TFs) as hubs and functional modules and calculated diverse topological metrics. In addition, we analyzed exhaustively the module related to cell death, with 60 TFs and 108 genes, where diverse cell proliferation, mating-type switching and meiosis, among other functions, were identified. To determine the role of some of these genes, we selected a set of 11 genes for expression analysis by qRT-PCR (sin3, rlm1, aif1, tdh3 [isoform A], tdh3 [isoform B], ald4, mca1, nuc1, tor1, ras1, and atg8) whose homologues in other fungi have been described as central in cell death. These genes were identified as downregulated at 72 h, in agreement with the beginning of the cell death process. Our results can serve as the basis for the study of transcriptional regulation, not only of the cell death process but also of all the cellular processes of U. maydis.