Hardydodd5366
org and included assessment of visual acuity via the Freiburg Visual Acuity and Contrast Test (FrACT) electronic software and assessment of visual perceptual batteries via the Children's Visual Impairment Test for developmental ages 3-6-years (CVIT 3-6). Our virtual testing protocol was successful in the seven participants tested. This paper reviews and critiques the model that we utilized and discusses ways in which this model can be improved. Aside from public health considerations during the pandemic, this approach is more convenient for many families. In a broader perspective, this approach can be scaled for larger N studies of rare conditions, such as CVI without being confined by proximity to the researcher.The purpose of this study was to identify factors associated with HIV-associated neurocognitive disorder (HAND) and symptoms of anxiety and depression in HIV+ Brazilian elderly on antiretroviral treatments. The study included 112 HIV+ elderly who completed a questionnaire, tests for cognitive screening, attention, problem solving, processing speed, visual perception, memory, and anxiety and depression scales. The results showed presence of HAND (89.3%), pathological anxiety (48.2%) and depression (58%) in the sample. Higher income was a protective factor for HAND (OR = 0.33). Waking up well-rested (OR = 0.63) and better diet quality (OR = 0.62) reduced the chance of pathological anxiety. Higher education (OR = 0.74) and waking up well-rested (OR = 0.61) reduced the chance of depression. Being female (OR = 7.73) increased the chance of depression. It can be concluded that it is important to evaluate cognitive and emotional aspects of HIV+ elders and to consider social and educational status, diet, and sleep in interventions, paying special attention to elderly women.Purpose To assess neural changes in perceptual effects induced by myopic defocus and hyperopic defocus stimuli in ametropic and emmetropic subjects using functional magnetic resonance imaging (fMRI). Methods This study included 41 subjects with a mean age of 26.0 ± 2.9 years. The mean spherical equivalence refraction was -0.54 ± 0.51D in the emmetropic group and -3.57 ± 2.27D in the ametropic group. The subjects were instructed to view through full refractive correction, with values of +2.00D to induce myopic defocus state and -2.00D to induce hyperopic defocus state. This was carried over in three random sessions. Arterial spin labeling (ASL) perfusion was measured using fMRI to obtain quantified regional cerebral blood flow (rCBF). Behavioral tests including distant visual acuity (VA) and contrast sensitivity (CS), were measured every 5 min for 30 min. Results Myopic defocus induced significantly greater rCBF increase in four cerebral regions compared with full correction right precentral gyrus, right superior temporal gyrus, left inferior parietal lobule, and left middle temporal gyrus (P less then 0.001). The differences were less significant in low myopes than emmetropes. In the hyperopic defocus session, the increased responses of rCBF were only observed in the right and left precentral gyrus. Myopic defocused VA and CS improved significantly within 5 min and reached a plateau shortly after. Conclusion This study revealed that myopic defocus stimuli can significantly increase blood perfusion in visual attention-related cerebral regions, which suggests a potential direction for future investigation on the relationship between retinal defocus and its neural consequences.The temporal trajectories and neural mechanisms of recovery of cognitive function after a major perturbation of consciousness is of both clinical and neuroscientific interest. The purpose of the present study was to investigate network-level changes in functional brain connectivity associated with the recovery and return of six cognitive functions after general anesthesia. High-density electroencephalograms (EEG) were recorded from healthy volunteers undergoing a clinically relevant anesthesia protocol (propofol induction and isoflurane maintenance), and age-matched healthy controls. A battery of cognitive tests (motor praxis, visual object learning test, fractal-2-back, abstract matching, psychomotor vigilance test, digital symbol substitution test) was administered at baseline, upon recovery of consciousness (ROC), and at half-hour intervals up to 3 h following ROC. EEG networks were derived using the strength of functional connectivity measured through the weighted phase lag index (wPLI). A partial least squares (PLS) analysis was conducted to assess changes in these networks (1) between anesthesia and control groups; (2) during the 3-h recovery from anesthesia; and (3) for each cognitive test during recovery from anesthesia. Networks were maximally perturbed upon ROC but returned to baseline 30-60 min following ROC, despite deficits in cognitive performance that persisted up to 3 h following ROC. Additionally, during recovery from anesthesia, cognitive tests conducted at the same time-point activated distinct and dissociable functional connectivity networks across all frequency bands. The results highlight that the return of cognitive function after anesthetic-induced unconsciousness is task-specific, with unique behavioral and brain network trajectories of recovery.Cognitive neuroscience of art continues to be criticized for failing to provide interesting results about art itself. In particular, results of brain imaging experiments have not yet been utilized in interpretation of particular works of art. Here we revisit a recent study in which we explored the neuronal and behavioral response to painted portraits with a direct versus an averted gaze. We then demonstrate how fMRI results can be related to the art historical interpretation of a specific painting. The evidentiary status of neuroimaging data is not different from any other extra-pictorial facts that art historians uncover in their research and relate to their account of the significance of a work of art. They are not explanatory in a strong sense, yet they provide supportive evidence for the art writer's inference about the intended meaning of a given work. We thus argue that brain imaging can assume an important role in the interpretation of particular art works.During childhood, the body undergoes rapid changes suggesting the need to constantly update body representation based on the integration of multisensory signals. Sensory experiences in critical periods of early development may have a significant impact on the neurobiological mechanisms underpinning the development of the sense of one's own body. Specifically, preterm children are at risk for sensory processing difficulties, which may lead to specific vulnerability in binding together sensory information in order to modulate the representation of the bodily self. The present study aims to investigate the malleability of body ownership in preterm (N = 21) and full-term (N = 19) school-age children, as reflected by sensitivity to the Rubber Hand Illusion. The results revealed that multisensory processes underlying the ability to identify a rubber hand as being part of one's own body are already established in childhood, as indicated by a higher subjective feeling of embodiment over the rubber hand during synchro and cognitive development.Few studies have evaluated the influence of idiosyncrasies that may influence the judgment of space-time orientation after passive motion. Rottlerin We designed a study to assess the influence of anxiety/depression (which may distort time perception), motion sickness susceptibility (which has been related to vestibular function, disorientation, and to the velocity storage mechanism), and personal habits on the ability to update orientation, after passive rotations in the horizontal plane. Eighty-one healthy adults (22-64 years old) accepted to participate. After they completed an in-house general health/habits questionnaire, the short Motion Sickness Susceptibility Questionnaire, the Hospital Anxiety and Depression Scale (HADS), the Pittsburgh Sleep Quality Index, and the short International Physical Activity Questionnaire, they were exposed to 10 manually driven whole-body rotations (45°, 90°, or 135°), in a square room, with distinctive features on the walls, while seated in the normal upright position, unrestrained, with noise-attenuating headphones and blindfolded. After each rotation, they were asked to report which wall or corner they were facing. To calculate the error of estimation of orientation, the perceived rotation was subtracted from the actual rotation. Multivariate analysis showed that the estimation error of the first rotation was strongly related to the results of the orientation test. The magnitude and the frequency of estimation errors of orientation were independently related to HADS anxiety sub-score and to adult motion sickness susceptibility, with no influence of age, but a contribution from the interaction of the use of spectacles, the quality of sleep and sex. The results suggest that idiosyncrasies may contribute to the space-time estimation of passive self-motion, with influence from emotional traits, adult motion sickness susceptibility, experience, and possibly sleep quality.Vibrational energy created at the larynx during speech will deflect vestibular mechanoreceptors in humans (Todd et al., 2008; Curthoys, 2017; Curthoys et al., 2019). Vestibular-evoked myogenic potential (VEMP), an indirect measure of vestibular function, was assessed in 15 participants who stutter, with a non-stutter control group of 15 participants paired on age and sex. VEMP amplitude was 8.5 dB smaller in the stutter group than the non-stutter group (p = 0.035, 95% CI [-0.9, -16.1], t = -2.1, d = -0.8, conditional R 2 = 0.88). The finding is subclinical as regards gravitoinertial function, and is interpreted with regard to speech-motor function in stuttering. There is overlap between brain areas receiving vestibular innervation, and brain areas identified as important in studies of persistent developmental stuttering. These include the auditory brainstem, cerebellar vermis, and the temporo-parietal junction. The finding supports the disruptive rhythm hypothesis (Howell et al., 1983; Howell, 2004) in which sensory inputs additional to own speech audition are fluency-enhancing when they coordinate with ongoing speech.Microglia are macrophages that reside in the central nervous system (CNS) and belong to the innate immune system. Moreover, they are crucially involved in CNS development, maturation, and aging; further, they are closely associated with neurons. In normal conditions, microglia remain in a static state. Upon trauma or lesion occurrence, microglia can be activated and subsequently polarized into the pro-inflammatory or anti-inflammatory phenotype. The phenotypic transition is regulated by numerous modulators. This review focus on the literature regarding the modulators and signaling pathways involved in regulating the microglial phenotypic transition, which are rarely mentioned in other reviews. Hence, this review provides molecular insights into the microglial phenotypic transition, which could be a potential therapeutic target for neuroinflammation.