Sechermaxwell2621

Z Iurium Wiki

Verze z 2. 11. 2024, 21:44, kterou vytvořil Sechermaxwell2621 (diskuse | příspěvky) (Založena nová stránka s textem „Our results indicate for the first time that the downregulation of fascin is involved in the pathogenesis of early recurrent miscarriage; and hence a poten…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Our results indicate for the first time that the downregulation of fascin is involved in the pathogenesis of early recurrent miscarriage; and hence a potential therapeutic target against the disease.CD63 is a member of the four-transmembrane-domain protein superfamily and is the first characterized tetraspanin protein. In the present study, we cloned the common carp (Cyprinus Carpio) CD63 (ccCD63) sequence and found that the ccCD63 ORF contained 711 bp and encoded a protein of 236 amino acids. Homology analysis revealed that the complete ccCD63 sequence had 84.08% amino acid similarity to CD63 of Sinocyclocheilus anshuiensis. Subcellular localization analysis revealed that ccCD63 was localized in the cytoplasm. Quantitative real-time PCR (qRT-PCR) analysis indicated that ccCD63 was expressed in the gill, intestine, liver, spleen, brain and kidney, with higher expression in spleen and brain tissues than in the other examined tissues. After koi herpesvirus (KHV) infection, these tissues exhibited various expression levels of ccCD63. The expression level was the lowest in the liver and highest in the brain; the expression level in the brain was 8.7-fold higher than that in the liver. Furthermore, knockdown of ccCD63 promoted KHV infection. Moreover, ccCD63 was correlated with the regulation of RIG-I/MAVS/TRAF3/TBK1/IRF3 and may be involved in the antiviral response through the RIG-I viral recognition signalling pathway in a TRAF3/TBK1-dependent manner. Taken together, our results suggested that ccCD63 upregulated the interaction of KHV with the host immune system and suppressed the dissemination of KHV.The cGAS-STING pathway plays essential roles in detecting cytosolic dsDNA and initiating antiviral and antibacterial responses in vertebrates. However, knowledge about its function in antiviral response of invertebrates is very limited. In the present study, a gene encoding a Mab21-containing protein, a cGAS homologue, was identified from a decapod crustacean Litopenaeus vannamei and designated as LvMab21cp. LvMab21cp was mainly distributed in intestine and hepatopancreas, showing similar expression profile with other genes in the cGAS-STING pathway, such as LvSTING and LvIRF. The expression levels of LvMab21cp, LvSTING and LvIRF were up-regulated in intestine and hepatopancreas of shrimp after white spot syndrome virus (WSSV) infection. Knockdown of LvMab21cp by dsRNA-mediated RNA interference could decrease the expression levels of its putative downstream genes, including LvSTING, LvIRF, LvVago4 and LvVago5, and enhance the in vivo propagation of WSSV in shrimp. Overexpression of LvMab21cp and LvSTING in HEK 293T cells activated the expression of mammalian IFNs upon simulation with interferon stimulatory DNA (ISD). These data suggest that LvMab21cp was a cGAS homologue, a member of the shrimp cGAS-STING pathway, and play an important role during WSSV infection. Selleck H-1152 To our knowledge, this is the first report to show the role of the cGAS-STING pathway in the antiviral response of invertebrates, which will provide new insights into the innate immunity of invertebrates.Toll-like receptors (TLRs), as a family of pattern recognition receptors (PRRs), possess specific pathogen-related molecular pattern (PAMP) recognition spectrum in inducing immune responses. In this study, sixteen TLRs were identified and characterized in mandarin fish (Siniperca chuatsi). All these TLRs consist of leucine-rich repeats (LRRs), a transmembrane domain and a Toll/interleukin-I receptor (TIR) domain, with the exception of TLR5S which lacks TIR domain, and they can be clustered into five branches, i.e. TLR1 subfamily, TLR3 subfamily, TLR5 subfamily, TLR7 subfamily and TLR11 subfamily in phylogenetic tree. These TLR genes were expressed in all tested tissues and had high expression levels in immune-related tissues such as head-kidney and spleen or mucosa-related tissues such as intestine and pyloric caecum. The transcripts of TLR2a, TLR2b, TLR3, TLR13a, TLR14, TLR22 and TLR23 were all significantly up-regulated after stimulation with poly(IC); TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR13a and TLR13b transcripts were all significantly up-regulated after stimulation with PGN; and TLR2a, TLR2b, TLR5M, TLR5S, TLR7, TLR8, TLR9, TLR13c, TLR14 and TLR22 transcripts were all significantly up-regulated after stimulation with LPS in isolated head kidney lymphocytes of mandarin fish. The findings in this study may provide a valuable basis for functional study on TLR genes in mandarin fish.The maximum running speed of legged animals is one evident factor for evolutionary selection-for predators and prey. Therefore, it has been studied across the entire size range of animals, from the smallest mites to the largest elephants, and even beyond to extinct dinosaurs. A recent analysis of the relation between animal mass (size) and maximum running speed showed that there seems to be an optimal range of body masses in which the highest terrestrial running speeds occur. However, the conclusion drawn from that analysis-namely, that maximum speed is limited by the fatigue of white muscle fibres in the acceleration of the body mass to some theoretically possible maximum speed-was based on coarse reasoning on metabolic grounds, which neglected important biomechanical factors and basic muscle-metabolic parameters. Here, we propose a generic biomechanical model to investigate the allometry of the maximum speed of legged running. The model incorporates biomechanically important concepts the ground reaction forignificant in animal locomotion. Furthermore, the model renders possible insights into biological design principles such as differences in the leg concept between cats and spiders, and the relevance of multi-leg (mammals four, insects six, spiders eight) body designs and emerging gaits. Moreover, we expose a completely new consideration regarding the muscles' metabolic energy consumption, both during acceleration to maximum speed and in steady-state locomotion.Biological experiments have shown that yeast can be restricted to grow in a uniaxial direction, vertically upwards from an agar plate to form a colony. The growth occurs as a consequence of cell proliferation driven by a nutrient supply at the base of the colony, and the height of the colony has been observed to increase linearly with time. Within the colony the nutrient concentration is non-constant and yeast cells throughout the colony will therefore not have equal access to nutrient, resulting in non-uniform growth. In this work, an agent based model is developed to predict the microscopic spatial distribution of labelled cells within the colony when the probability of cell proliferation can vary in space and time. We also describe a method for determining the average trajectories or pathlines of labelled cells within a colony growing in a uniaxial direction, enabling us to connect the microscopic and macroscopic behaviours of the system. We present results for six cases, which involve different assumptions for the presence or absence of a quiescent region (where no cell proliferation occurs), the size of the proliferative region, and the spatial variation of proliferation rates within the proliferative region.

Autoři článku: Sechermaxwell2621 (England Hinton)