Holdtguldbrandsen6540
Making good decisions in extremely complex and difficult processes and situations has always been both a key task as well as a challenge in the clinic and has led to a large amount of clinical, legal and ethical routines, protocols and reflections in order to guarantee fair, participatory and up-to-date pathways for clinical decision-making. Nevertheless, the complexity of processes and physical phenomena, time as well as economic constraints and not least further endeavours as well as achievements in medicine and healthcare continuously raise the need to evaluate and to improve clinical decision-making. This article scrutinises if and how clinical decision-making processes are challenged by the rise of so-called artificial intelligence-driven decision support systems (AI-DSS). In a first step, this article analyses how the rise of AI-DSS will affect and transform the modes of interaction between different agents in the clinic. In a second step, we point out how these changing modes of interaction also imply shifts in the conditions of trustworthiness, epistemic challenges regarding transparency, the underlying normative concepts of agency and its embedding into concrete contexts of deployment and, finally, the consequences for (possible) ascriptions of responsibility. Third, we draw first conclusions for further steps regarding a 'meaningful human control' of clinical AI-DSS. © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.The purpose of this study was to identify critical pathways promoting survival of tamoxifen-tolerant, estrogen receptor α positive (ER+) breast cancer cells, which contribute to therapy resistance and disease recurrence. Gene expression profiling and pathway analysis was performed in ER+ breast tumors of patients before and after neo-adjuvant tamoxifen treatment and demonstrated activation of the NFκB pathway and an enrichment of EMT/stemness features. Exposure of ER+ breast cancer cell lines to tamoxifen, in vitro and in vivo, gives rise to a tamoxifen-tolerant population with similar NFκB activity and EMT/stemness characteristics. Small molecule inhibitors and CRISPR/Cas9 knock out were used to assess the role of the nuclear factor κB (NFκB) pathway and demonstrated that survival of tamoxifen-tolerant cells requires NFκB activity. Moreover, this pathway was essential for tumor recurrence following tamoxifen withdrawal. These findings establish that elevated NFκB activity is observed in breast cancer cell lines under selective pressure with tamoxifen in vitro and in vivo, as well as in patient tumors treated with neo-adjuvant tamoxifen therapy. This pathway is essential for survival and regrowth of tamoxifen-tolerant cells, and, as such, NFκB inhibition offers a promising approach to prevent recurrence of ER+ tumors following tamoxifen exposure. Implications Understanding initial changes that enable survival of tamoxifen-tolerant cells, as mediated by NFκB pathway, may translate into therapeutic interventions to prevent resistance and relapse, which remain major causes of breast cancer lethality. Copyright ©2020, American Association for Cancer Research.Endocrine cells of the pancreatic islet interact with their microenvironment to maintain tissue homeostasis. Communication with local macrophages is particularly important in this context, but the homeostatic functions of human islet macrophages are not known. Here we show that the human islet contains macrophages in perivascular regions that are the main local source of the anti-inflammatory cytokine Il-10 and the metalloproteinase MMP9. Macrophage production and secretion of these homeostatic factors is controlled by endogenous purinergic signals. In obese and diabetic states, macrophage expression of purinergic receptors, MMP9, and Il-10 is reduced. We propose that in those states exacerbated beta cell activity due to increased insulin demand and increased cell death produces high levels of ATP that downregulate purinergic receptor expression. Loss of ATP sensing in macrophages may reduce their secretory capacity. © 2020 by the American Diabetes Association.NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islet (PI) β-cells by an as yet unknown mechanism. We found NADPH oxidase, isoform-4 (NOX4), to be the major producer of cytosolic H2O2, essential for GSIS, while the increase in ATP/ADP alone was insufficient. The fast GSIS phase was absent in PIs from NOX4-null, β-cell-specific knockout mice (NOX4βKO) (not NOX2KO), and NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations and the patch-clamped ATP-sensitive potassium channel (KATP) opened more frequently at high glucose. Mitochondrial H2O2, decreasing upon GSIS, provided an alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxide by electron-transport flavoproteinQ-oxidoreductase. Unlike GSIS, this ceased with mitochondrial antioxidant SkQ1. Both NOX4KO and NOX4βKO strains exhibited impaired glucose tolerance and peripheral insulin resistance. Thus the redox signaling previously suggested to cause β-cell-self-checking - hypothetically induces insulin resistance when absent. In conclusion, ATP plus H2O2 elevations constitute an essential switch-on signal of insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (partly for fatty acids). Redox signaling could be impaired by cytosolic antioxidants, hence those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage. © 2020 by the American Diabetes Association.HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1-18 year-old patients (n=962) and controls (n=636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically-organized haplotype (HOH) association analysis, allowed 45 unique DQ haplotypes to be categorized into seven clusters. Dimethindene supplier The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster, included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues α44Q (OR 3.29, p=2.38*10-85 ) and β57A (OR 3.44, p=3.80*10-84) to be associated with T1D in the DQ8/9 cluster representing all ten residues (α22, α23, α44, α49, α51, α53, α54, α73, α184, β57) due to complete linkage-disequilibrium (LD) of α44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found α44C and β135D to share the risk for T1D (OR 2.