Petersbrock9933

Z Iurium Wiki

Verze z 2. 11. 2024, 14:43, kterou vytvořil Petersbrock9933 (diskuse | příspěvky) (Založena nová stránka s textem „The conducted analyses suggest that another major gene or other factors were influencing kernel texture.<br /><br /> The online version contains supplement…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The conducted analyses suggest that another major gene or other factors were influencing kernel texture.

The online version contains supplementary material available at 10.1007/s13205-021-02897-3.

The online version contains supplementary material available at 10.1007/s13205-021-02897-3.The present study was aimed at producing enhanced and sustained bioelectricity from distillery wastewater in a double chamber microbial fuel cell (MFC) by changing inter-electrode distance, inoculum and reactor volume. Using double chamber MFC with 1 L working volume, when the distance between the electrodes was kept shorter (1 cm), it generated power density of 1.74 W/m3, which was 42.5% higher than that of MFC with electrode spacing of 10 cm (1 W/m3). Using inoculum from different sources viz. garden soil (MFC-GS), wetland sediment (MFC-WS) and sludge from wastewater treatment plant (MFC-S), the highest open circuit voltage (OCV) of 0.84 V and power density of 2.74 W/m3 were produced by MFC-WS, which also showed sustained electricity production (1.68 W/m3) from the wastewater during a 10-day experiment. Relatively lower power density was generated from MFC-S (1.42 W/m3), while that from MFC-GS was the lowest (0.94 W/m3). Bioelectricity generation and overall performance were then assessed using a smaller reactor size. Smaller working volume of MFC (250 ml) favoured greater production of power density (3.2 W/m3) than that with 1 L working volume (2.96 W/m3) with electrode distance of 1 cm. The present study was novel in selecting a suitable mixed-microbial inoculum out of the diverse sources screened and reducing resistance by sharply narrowing down inter-electrode distance and reactor volume, which led to significantly enhanced and sustained electricity generation from double chamber MFC.Cyanobacteria are oxygenic photosynthetic microorganisms known for their agricultural and industrial importance. Unavailability of efficient and fast isolation and purification methods of cyanobacteria has impeded our understanding of cyanobacterial diversity. Infigratinib ic50 A number of techniques for isolation and purification of cyanobacteria are available, but most of them are cumbersome as well as time-consuming. In the present study, we modified and validated a uni-algal isolation technique named as Microscope Assisted Uni-algal isolation through Dilution (MAU-D) which used dilution of mixed algal population on slide and isolation of single type of cyanobacterial cells using light microscope. Using this technique, we obtained 81 cyanobacterial isolates belonging to various species from 19 different genera from soil and water samples collected from rice fields of Uttar Pradesh, India. This technique also resulted in isolation of six distinct genera, viz., Cyanobacterium, Toxopsis, Desertifilum, Chroococcidiopsis, Halomicronema, and Alkalinema, which were previously not reported from rice fields of India. Hence, the MAU-D technique presents a simple, comparatively fast method of isolation and purification of cyanobacteria which can help to isolate those cyanobacteria which are difficult to isolate through routine sub-culturing.

The online version contains supplementary material available at 10.1007/s13205-021-02890-w.

The online version contains supplementary material available at 10.1007/s13205-021-02890-w.The present work describes the biofabrication of highly stable, water-dispersible mycogenic silver/silver (I) oxide nanoparticles (Ag/Ag2O NPs) alongside its potential applications in non-enzymatic electrochemical glucose sensing and catalytic degradation of methylene blue (MB) dye in presence of reducing agent NaBH4. These Ag/Ag2O NPs were fabricated from silver oxide micro powder using endophytic fungus Fusarium oxysporum based environmentally friendly, bio-inspired, top-down approach which is highly reproducible, reliable, and cheap. Bacterial and plant-mediated bottom-up approaches have been previously reported for the production of Ag/Ag2O NPs. Bacterial methods are not economical as they require expensive sophisticated instruments for separation and purification. Similarly, plant-based means of synthesis are not reliable and reproducible due to geographical and seasonal variability's. UV-Visible spectroscopy, TEM, SAED, FTIR, XRD, TGA, and DSC were used for the characterization and investigation of thermal properties of mycogenic nanoparticles and their antimicrobial activity was evaluated by filter- paper bioassay technique.A new matrix formulation was devised for catalase immobilization. Carrageenan-alginate beads different ratios were developed and soaked into different ratios of CaCl2-KCl as a hardening solution. The best formulation for loading capacity was selected, treated with polyethylene imine followed by glutaraldehyde and further studied. The best concentration of catalase for immobilization was 300U/ml and the best loading time was 6 h. The catalytic properties increased after immobilization and the immobilized catalase achieved optimum activity at a temperature range of 30-50 °C that was compared to the optimum activity of free catalase which occurred at 40 °C. Higher catalytic activity of immobilized catalase occurred at alkaline pHs than the free one which achieved optimum catalytic activity at neutral pH. A comparison between the kinetic parameters of immobilized and free catalase showed variation. The K M and Vmax of the immobilized catalase were 2.4 fold and six times higher than those of free catalase. The results of the study indicate that the formulated matrix can be used as a good matrix for catalase enzyme in various industrial applications.Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.

Autoři článku: Petersbrock9933 (Shea Mckay)