Hodgepowell3317
MtDNA copy number was not significantly affected by the CBS-/- genotype. Taken together, these findings identify the CBS gene as a new locus in human DNA that affects TL in women and illustrate a concept that a housekeeping metabolic gene can be involved in telomere biology. 3-MA nmr Our findings suggest that neither telomere shortening nor reduced mtDNA copy number contribute to the reduced life span in CBS-/- patients.Skin melanisation ranges widely across human populations. Melanin has antioxidant properties and also acts as a filter to solar ultraviolet radiation (UVR) incident upon the skin. In this study we firstly examined whether melanin level might influence baseline levels of systemic oxidative stress, in 65 humans in vivo from the same geographical area ranging from the lightest to darkest skin type (phototype I-VI). This was examined in winter-time (latitude 53.5°N). Remarkably, we found that urinary biomarkers of oxidatively-generated DNA damage (8-oxodG) and RNA damage (8-oxoGuo) were significantly correlated with skin lightness (L*), such that 14-15% of the variation in their baseline levels could be explained by skin colour. Next we exposed 15 humans at the extremes of skin melanisation to a simulated summer-time exposure of solar UVR (95% UVA, 5% UVB; dose standardised to sunburn threshold), following which they provided a sample of every urine void over the next five days. We found that UVR induced a small but significant increase in urinary 8-oxodG and 8-oxoGuo, with differing kinetics between skin types. Thus greater melanisation is associated with protection against systemic oxidative stress, which may reflect melanin's antioxidant properties, and solar UVR exposure also influences systemic oxidative stress levels in humans. These novel findings may have profound implications for human physiology and health.The emergence of COVID-19 has triggered many works aiming at identifying the animal intermediate potentially involved in the transmission of SARS-CoV-2 to humans. The presence of SARS-CoV-2-related viruses in Malayan pangolins, in silico analysis of the ACE2 receptor polymorphism and sequence similarities between the Receptor Binding Domain (RBD) of the spike proteins of pangolin and human Sarbecoviruses led to the proposal of pangolin as intermediary. However, the binding affinity of the pangolin ACE2 receptor for SARS-CoV-2 RBD was later on reported to be low. Here, we provide evidence that the pangolin is not the intermediate animal at the origin of the human pandemic. Moreover, data available do not fit with the spillover model currently proposed for zoonotic emergence which is thus unlikely to account for this outbreak. We propose a different model to explain how SARS-CoV-2 related coronaviruses could have circulated in different species, including humans, before the emergence of COVID-19.Small interfering RNA (siRNA) has been expected to be a unique pharmaceutic for the treatment of broad-spectrum intractable diseases. However, its unfavorable properties such as easy degradation in the blood and negative-charge density are still a formidable barrier for clinical use. For disruption of this barrier, siRNA delivery technology has been significantly advanced in the past two decades. The approval of Patisiran (ONPATTRO™) for the treatment of transthyretin-mediated amyloidosis, the first approved siRNA drug, is a most important milestone. Since lipid-based nanoparticles (LNPs) are used in Patisiran, LNP-based siRNA delivery is now of significant interest for the development of the next siRNA formulation. In this review, we describe the design of LNPs for the improvement of siRNA properties, bioavailability, and pharmacokinetics. Recently, a number of siRNA-encapsulated LNPs were reported for the treatment of intractable diseases such as cancer, viral infection, inflammatory neurological disorder, and genetic diseases. We believe that these contributions address and will promote the development of an effective LNP-based siRNA delivery system and siRNA formulation.
Medulloblastoma has recently been characterized as a heterogeneous disease with 4 distinct molecular subgroups wingless (WNT), sonic hedgehog (SHH), group 3, and group 4, with a new definition of risk stratification. We report progression-free survival, overall survival, and long-term cognitive effects in children with standard-risk medulloblastoma exclusively treated with hyperfractionated radiation therapy (HFRT), reduced boost volume, and online quality control, and we explore the prognostic value of biological characteristics in this chemotherapy-naïve population.
Patients with standard-risk medulloblastoma were enrolled in 2 successive prospective multicentric studies, MSFOP 98 and MSFOP 2007, and received exclusive HFRT (36 Gy, 1 Gy/fraction twice daily) to the craniospinal axis followed by a boost at 68 Gy restricted to the tumor bed (1.5 cm margin), with online quality assurance before treatment. Patients with MYC or MYCN amplification were not excluded at the time of the study. We report progressment.
HFRT led to a 5-year survival rate similar to other treatments combined with chemotherapy, with a reduced treatment duration of only 6 weeks. We confirm the MSFOP 98 results and the prognostic value of molecular status in patients with medulloblastoma, even in the absence of chemotherapy. Intelligence quotient was more preserved in children with medulloblastoma who received exclusive HFRT and reduced local boost, and intelligence quotient decline was delayed compared with patients receiving standard regimen. HFRT may be appropriate for patients who do not consent to or are not eligible for prospective clinical trials; for patients from developing countries for whom aplasia or ileus may be difficult to manage in a context of high cost/effectiveness constraints; and for whom shortened duration of RT may be easier to implement.
Mounting evidence demonstrates that combining radiation therapy (RT) with immunotherapy can reduce tumor burden in a subset of patients. However, conventional systemic delivery of immunotherapeutics is often associated with significant adverse effects, which force treatment cessation. The aim of this study was to investigate a minimally invasive therapeutics delivery approach to improve clinical response while attenuating toxicity.
We used a nanofluidic drug-eluting seed (NDES) for sustained intratumoral delivery of combinational antibodies CD40 and PDL1. To enhance immune and tumor response, we combined the NDES intratumoral platform with RT to treat the 4T1 murine model of advanced triple negative breast cancer. We compared the efficacy of NDES against intraperitoneal administration, which mimics conventional systemic treatment. Tumor growth was recorded, and local and systemic immune responses were assessed via imaging mass cytometry and flow cytometry. Livers and lungs were histologically analyzed for evaluation of toxicity and metastasis, respectively.