Cohenskipper0276
Severe negative energy balance around parturition is an important contributor to ketosis, a metabolic disorder that occurs most frequently in the peripartal period. Autophagy and mitophagy are important processes responsible for breaking down useless or toxic cellular material, and in particular damaged mitochondria. However, the role of autophagy and mitophagy during the occurrence and development of ketosis is unclear. The objective of this study was to investigate autophagy and mitophagy in the livers of cows with subclinical ketosis (SCK) and clinical ketosis (CK). We assessed autophagy by measuring the protein abundance of microtubule-associated protein 1 light chain 3-II (LC3-II; encoded by MAP1LC3) and sequestosome-1 (p62, encoded by SQSTM1), as well as the mRNA abundance of autophagy-related genes 5 (ATG5), 7 (ATG7), and 12 (ATG12), beclin1 (BECN1), and phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3). Mitophagy was evaluated by measuring the protein abundance of the mitophagy upstream nce of PINK1 and Parkin was greater in cows with SCK and slightly lower in cows with CK than in healthy cows. These data demonstrated differences in the hepatic activities of autophagy and mitophagy in cows with SCK compared with cows with CK. Although the precise mechanisms for these differences could not be discerned, autophagy and mitophagy seem to be involved in ketosis.The growing prevalence of obesity affects millions of people around the world and has gained increased attention over the years because it is associated with the development of other chronic degenerative diseases. Different organizations recommend lifestyle changes to treat obesity; nevertheless, other strategies in addition to lifestyle changes have recently been suggested. One of these strategies is the use of probiotics in fermented dairy products; however, a need exists to review the different studies available related to the potential antiobesity effect of these products. Because probiotic fermented dairy products that support weight management are not available in the market, there is a great opportunity for the development of functional dairy products with new lactic acid bacteria that may present this added health benefit. Thus, the purpose of this overview is to highlight the importance of probiotic fermented dairy products as potential antiobesogenic functional foods and present in vitro and in vivo studies required before this kind of product may be introduced to the market. Pomalidomide Overall, most studies attributed the antiobesity effect of fermented dairy foods to the probiotic strains present; however, bioactive peptides released during milk fermentation may also be responsible for this effect.Adipose tissue concentration of reactive oxygen species (ROS) increases in dairy cows with ketosis, suggesting that the tissue experiences oxidative stress. Autophagy, an adaptive response to cellular stress, has been shown to promote survival and plays a critical role in antioxidant responses. Dysregulation of adenosine 5'-monophosphate-activated protein kinase (AMPK) is closely related to antioxidant responses and autophagy of adipocytes in animal models of metabolic disorders, but its role in bovine adipose tissue during periods of stress is unknown. We hypothesized that AMPK may play important roles in the regulation of oxidative stress in adipose tissue of ketotic cows. Specific objectives were to evaluate autophagy status and AMPK activity in adipose tissue of ketotic cows, and their link with oxidative stress in isolated bovine adipocytes. Selection of 15 healthy and 15 clinically ketotic Holstein cows at 17 (±4) d postpartum was performed after a thorough veterinary evaluation for clinical symptoms an of ROS and malondialdehyde (MDA), whereas H2O2 stimulation inhibited activities of the antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). Addition of AMPK activator A769662 increased antioxidant response via activating NFE2L2 and its downstream targets heme oxygenase 1 (HMOX1), superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione-S-transferase (GST) to improve H2O2-induced oxidative stress in adipocytes. Simultaneously, activation of AMPK increased abundance of Beclin1, SQSTM1, ATG7, ATG5, and ratio of LC3II to LC3I. In contrast, inhibition of AMPK downregulated abundance of NFE2L2, HMOX1, SOD1, CAT, Beclin1, SQSTM1, ATG7, ATG5, and ratio of LC3II to LC3I, and further aggravated H2O2-induced oxidative stress. Overall, these data indicate that activation of AMPK, as an adaptive mechanism for acute metabolic regulation of adipose tissue homeostasis, can induce antioxidant responses and autophagy, and further reduce oxidative stress in bovine adipocytes.Streptococcus agalactiae is a contagious pathogen that causes bovine mastitis worldwide, resulting in considerable economic losses. In this study, we isolated 42 S. agalactiae strains in 379 milk samples from cows with subclinical mastitis on 15 dairy farms in 12 Chinese provinces. Analysis based on capsular typing and multilocus sequence typing, combined with patterns of virulence gene scanning and antimicrobial resistance, identified the lineages and populations of the isolates. We grouped the 42 isolates into 7 sequence types belonging to 6 clonal complexes, mainly CC103 (31/42 isolates; 73.8%). We identified an ST-23 strain named Sa 129 for the first time on Chinese dairy farms-this strain is usually associated with human isolates. Capsular types Ia and II were predominant in capsular typing. The prevalence of virulence profile 1 (bibA, cfb, cspA, cylE, fbsA, fbsB, hylB, and pavA) was 64.3%, and represented the main trend in China. With respect to antimicrobial resistance, most isolates were susceptible to β-lactams, rifamycin, glycopeptides, and oxazolidone; resistance to several antimicrobial agents, including lincomycin, clindamycin, and doxycycline, varied in 4 different regions. Our research provides a profile for the molecular epidemiology, multilocus sequence typing, antimicrobial resistance, and virulence gene clustering of S. agalactiae, and may be beneficial for the clinical monitoring, prevention, and control of mastitis in dairy cattle.