Odomwynn7827

Z Iurium Wiki

Verze z 1. 11. 2024, 21:52, kterou vytvořil Odomwynn7827 (diskuse | příspěvky) (Založena nová stránka s textem „15 µg/g FW) and the lowest concentration in "Touxinhong" (559.60 µg/g FW). "Jinxia", "Yuhua3" and "Chengxiang" had better amino acid scores compared with…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

15 µg/g FW) and the lowest concentration in "Touxinhong" (559.60 µg/g FW). "Jinxia", "Yuhua3" and "Chengxiang" had better amino acid scores compared with others, in particularly the lowest value in the red flesh varieties. Finally, according to PCA and the heatmaps, amino acids in "Chengxiang"had evident differences to other varieties, which showed the different amino acid concentrations and composition. Overall, the results of this study highlighted three yellow flesh and one white flesh varieties that had satisfactory concentrations and components of amino acid values. In addition, amino acids were the precursors of aroma compounds, so these differences between varieties werea new way to screen the potential varieties for producing high quality peach wines with the anticipated specific characteristics.Baltic herring (Clupea harengus membras) pickled in vinegar is a common product in the Nordic countries. Other weak acids are used to cook and preserve fish in other food cultures. The aim of this study was to evaluate the potential of weak acids to produce safe and nutritious pickled fish products with varying sensory properties. The influence of acetic, citric, lactic, malic, and tartaric acids on the preservability and quality of pickled and marinated Baltic herring was studied by measuring microbiological quality, pH, chemical composition, and lipid oxidation and by sensory profiling. Pickling with these acids with pH levels of 3.7-4.2 resulted in pickled Baltic herring products with high microbiological quality. The results of the chemical analysis of the samples indicated that pickling and storage on marinade influenced the chemical composition of fish. The most significant changes in chemical composition were the increase in moisture and decrease in protein content of the samples during storage. Fat content decreased during the storage period in acetic acid and malic acid samples. All tested acids inhibited lipid oxidation for one month, but at three and four month time points, the content of oxidation products increased except in the samples pickled with tartaric acid. The highest oxidation level was observed in the case of citric acid and the lowest with tartaric acid. The results indicate that replacing acetic acid with other weak acids frequently used in the food industry results in pickled and marinated fish products with novel and milder sensory profiles.This study was carried out to investigate the effects of superfine grinding (SP) and high-pressure homogenization (HPH) on the structural and physicochemical properties of artichoke dietary fiber (ADF), as well as the protective effects against cadmium poisoning in rats. The structural characteristics and physicochemical properties of ADF, HPH-ADF (ADF treated by HPH) and CM-ADF (ADF treated by SP and HPH) were determined, and cadmium chloride (CdCl2) was induced by exposing rats for 7 weeks. The amounts of creatinine and urea; the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum; the quantity of red blood cells, hemoglobin, white blood cells and neutrophil proportion in blood samples; and the activity of glutathione peroxidase (GSH-Px) in liver tissue were analyzed. Hematoxylin-eosin (HE) staining was performed to analyze the tissue structure and pathology of the liver and testis. The results showed that ADF subjected to HPH and SP-HPH exhibited increased content of F. ADF has specific potential to be used in health foods or therapeutic drugs, providing a reference for the development and utilization of artichoke waste.The university stage is a crucial stage that influences the decision-making process of students. At this stage, they acquire dietary habits that are guided by their likes, beauty ideals, biological influences, and economic factors. During the COVID-19 pandemic, universities closed and turned to online teaching, changing their life habits under the duress of confinement. The aim of the present work was to identify the dietary behaviours of nursing and engineering degree students at the University of Huelva during the period of confinement, in addition to identifying the factors influencing these habits. The methodological strategy employed was mixed in nature. In this sense, a cross-sectional descriptive study was first performed, followed by a phenomenological qualitative study that was descriptive in nature. Examination of outcomes revealed the presence of four lines of argument founded on the influence of context, life habits, emotional changes experienced during the COVID-19 pandemic, and the factors facilitating or limiting adaption to this period. Taking into account that confinement, restrictive measures, the absence of family, closeness and affection, and training influenced changes to feeding habits and approaches to consumption, universities could carry out interventions oriented in this line to favour healthy eating habits.Inflammatory bowel disease (IBD) is associated with intestinal epithelial barrier dysfunction and elevation of proinflammatory cytokines such as TNF-α. Tight junctions (TJ) control the paracellular barrier of the gut. Thinned apples are an indispensable horticultural agro-waste for apple cultivation, but are disposed by most farmers. This study aimed to elucidate the preventive effect of thinned apple extracts (TAE) on the intestinal epithelial barrier dysfunction induced by TNF-α treatment in Caco-2 cells. The differentiated Caco-2 monolayers were pre-treated with mature apple extract (MAE) and TAE for 1 h and then incubated with 100 ng/mL TNF-α for 24 h. The TJ integrity was estimated by measuring the value of transepithelial electrical resistance (TEER) and the flux of fluorescein isothiocyanate-dextran through paracellular transport. TAE had a better protective effect on the intestinal epithelial barrier than MAE did. Western blot results showed that TAE pre-retreatment elevated TJ protein levels such as claudin-1, -4, and -5. Moreover, TAE inhibited the interaction between zonula occludens proteins (ZO)-1 and occludin by reducing the tyrosine phosphorylation of ZO-1. The mechanisms underlying TAE-mediated attenuation of TNF-α-induced TJ disruption included suppression of myosin light chain kinase and NF-κB p65 protein levels. Therefore, thinned apples could be a sustainable ingredient for functional foods to prevent IBD.Deep spoilage is a cyclical and costly problem for the meat industry. Mianning ham is a famous dry-cured meat product in Sichuan, China. The aim of this work was to investigate the physicochemical characteristics, sources of odor, and associated microorganisms that cause spoilage of Mianning ham. High-throughput sequencing and solid-phase microextraction-gas-chromatography (SPME-GC-MS) techniques were used to characterize the physicochemical properties, microbial community structure, and volatile compounds of spoiled Mianning ham and to compare it with normal Mianning ham. The results showed that spoiled ham typically had higher moisture content, water activity (aw), and pH, and lower salt content. The dominant bacterial phylum detected in deeply spoiled ham was Firmicutes (95.4%). The dominant bacterial genus was Clostridium_sensu_stricto_2 (92.01%), the dominant fungal phylum was Ascomycota (98.48%), and the dominant fungal genus was Aspergillus (84.27%). A total of 57 volatile flavor substances were detected in deeply spoiled ham, including 11 aldehydes, 2 ketones, 6 alcohols, 10 esters, 20 hydrocarbons, 6 acids, and 2 other compounds. Hexanal (279.607 ± 127.265 μg/kg) was the most abundant in deeply spoiled ham, followed by Butanoic acid (266.885 ± 55.439 μg/kg) and Nonanal (165.079 ± 63.923 μg/kg). Clostridium_sensu_stricto_2 promoted the formation of five main flavor compounds, Heptanal, (E)-2-Octenal, 2-Nonanone, Hexanal, and Nonanal, in deeply spoiled ham by correlation analysis of microbial and volatile flavor substances.To effectively deliver lutein, hydrothermally prepared tea seed cake protein nanoparticles (TSCPN) were used to fabricate Pickering emulsion, and the bioaccessibility of lutein encapsulated by Pickering emulsion and the conventional emulsion was evaluated in vitro. The results indicated that the average size and absolute value of zeta potential of TSCPN increased along with the increase in the protein concentration, and 2% protein concentration was adopted to prepare TSCPN. With the increase in the concentration of TSCPN, the size of Pickering emulsion decreased from 337.02 μm to 89.36 μm, and when the TSCPN concentration was greater than 0.6%, all emulsions exhibited good stability during the 14 days storage. Combined with the microstructure result, 1.2% TSCPN was used to stabilize Pickering emulsion. With the increase in ionic concentration (0-400 mM), the particle size of the emulsions increased while the absolute value of zeta potential decreased. TSCPN-based Pickering emulsion was superior to the conventional emulsion for both lutein encapsulation (96.6 ± 1.0% vs. 82.1 ± 1.4%) and bioaccessibility (56.0 ± 1.1% vs. 35.2 ± 1.2%). Thus, TSCPN-based Pickering emulsion in this study have the potential as an effective carrier for lutein.Ginsenoside Rf (G-Rf) is a saponin of the protopanaxatriol family and a bioactive component of Korean ginseng. compound library activator Several ginsenosides are known to have a positive effect on exercise endurance, but there is not yet a report on that of G-Rf. Forced swimming tests were performed on G-Rf-treated mice to evaluate the effect of G-Rf on exercise endurance. Subsequently, the expression of markers related to myoblast differentiation and mitochondrial biogenesis in murine skeletal C2C12 myotubes and tibialis anterior muscle tissue was determined using Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining to elucidate the mechanism of action of G-Rf. The swimming duration of the experimental animal was increased by oral gavage administration of G-Rf. Moreover, G-Rf significantly upregulated the myoblast differentiation markers, mitochondrial biogenesis markers, and its upstream regulators. In particular, the mitochondrial biogenesis marker increased by G-Rf was decreased by each inhibitor of the upstream regulators. G-Rf enhances exercise endurance in mice, which may be mediated by myoblast differentiation and enhanced mitochondrial biogenesis through AMPK and p38 MAPK signaling pathways, suggesting that it increases energy production to satisfy additional needs of exercising muscle cells. Therefore, G-Rf is an active ingredient in Korean ginseng responsible for improving exercise performance.Hydrolysis of olive, rapeseed, linseed, almond, peanut, grape seed and menhaden oils was performed with commercial lipases of Aspergillus niger, Rhizopus oryzae, Rhizopus niveus, Rhizomucor miehei and Candida rugosa. In chromogenic plate tests, olive, rapeseed, peanut and linseed oils degraded well even after 2 h of incubation, and the R. miehei, A. niger and R. oryzae lipases exhibited the highest overall action against the oils. Gas chromatography analysis of vegetable oils hydrolyzed by R. miehei lipase revealed about 1.1 to 38.4-fold increases in the concentrations of palmitic, stearic, oleic, linoleic and α-linolenic acids after the treatment, depending on the fatty acids and the oil. The major polyunsaturated fatty acids produced by R. miehei lipase treatment from menhaden oil were linoleic, α-linolenic, hexadecanedioic, eicosapentaenoic, docosapentaenoic and docosahexaenoic acids, with yields from 12.02 to 52.85 µg/mL reaction mixture. Folin-Ciocalteu and ferric reducing power assays demonstrated improved antioxidant capacity for most tested oils after the lipase treatment in relation to the concentrations of some fatty acids.

Autoři článku: Odomwynn7827 (Carlsson Duncan)