Laugesenvincent6446

Z Iurium Wiki

Verze z 1. 11. 2024, 19:27, kterou vytvořil Laugesenvincent6446 (diskuse | příspěvky) (Založena nová stránka s textem „ccurring in natural environments and wild animals are still scarce. Here, we show that wild animals carry pathogenic Listeria and that the same genotypes c…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

ccurring in natural environments and wild animals are still scarce. Here, we show that wild animals carry pathogenic Listeria and that the same genotypes can be found at different time points in different host species. This work highlights the need of Listeria species monitoring of environmental contamination and the importance of tonsils as a possible L. monocytogenes intrahost reservoir.Diverse Lactobacillus strains are widely used as probiotic cultures in the dairy and dietary supplement industries, and specific strains, such as Lactobacillus acidophilus NCFM, have been engineered for the development of biotherapeutics. To expand the Lactobacillus manipulation toolbox with enhanced efficiency and ease, we present here a CRISPR (clustered regularly interspaced palindromic repeats)-SpyCas9D10A nickase (Cas9N)-based system for programmable engineering of L. acidophilus NCFM, a model probiotic bacterium. Successful single-plasmid delivery system was achieved with the engineered pLbCas9N vector harboring cas9N under the regulation of a Lactobacillus promoter and a cloning region for a customized single guide RNA (sgRNA) and editing template. The functionality of the pLbCas9N system was validated in NCFM with targeted chromosomal deletions ranging between 300 bp and 1.9 kb at various loci (rafE, lacS, and ltaS), yielding 35 to 100% mutant recovery rates. Genome analysis of the mutants confirmed pc acid bacteria (LAB), which are commonly known for their long history of use in food fermentations and as indigenous members of healthy microbiotas and for their emerging roles in human and animal commercial health-promoting applications. We exploited the established CRISPR-SpyCas9 nickase for flexible and precise genome editing applications in Lactobacillus acidophilus and further demonstrated the efficacy of this universal system in two distantly related Lactobacillus species. This versatile Cas9-based system facilitates genome engineering compared to conventional gene replacement systems and represents a valuable gene editing modality in species that do not possess native CRISPR-Cas systems. Overall, this portable tool contributes to expanding the genome editing toolbox of LAB for studying their health-promoting mechanisms and engineering of these beneficial microbes as next-generation vaccines and designer probiotics.Salicylic acid plays an important role in the plant immune response, and its degradation is therefore important for plant-pathogenic fungi. However, many nonpathogenic microorganisms can also degrade salicylic acid. In the filamentous fungus Aspergillus niger, two salicylic acid metabolic pathways have been suggested. The first pathway converts salicylic acid to catechol by a salicylate hydroxylase (ShyA). In the second pathway, salicylic acid is 3-hydroxylated to 2,3-dihydroxybenzoic acid, followed by decarboxylation to catechol by 2,3-dihydroxybenzoate decarboxylase (DhbA). A. niger cleaves the aromatic ring of catechol catalyzed by catechol 1,2-dioxygenase (CrcA) to form cis,cis-muconic acid. However, the identification and role of the genes and characterization of the enzymes involved in these pathways are lacking. In this study, we used transcriptome data of A. niger grown on salicylic acid to identify genes (shyA and crcA) involved in salicylic acid metabolism. Heterologous production in Escherichia col is mainly produced through chemical synthesis from petroleum-based chemicals. Here, we show that two enzymes from fungi can be used to produce cis,cis-muconic acid from salicylic acid and contributes in creating alternative methods for the production of platform chemicals.Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis) is the causative agent of giardiasis, one of the most common diarrheal infections in humans. Evolutionary relationships among G. duodenalis genotypes (or subtypes) of assemblage B, one of two genetic assemblages causing the majority of human infections, remain unclear due to poor phylogenetic resolution of current typing methods. In this study, we devised a methodology to identify new markers for a streamlined multilocus sequence typing (MLST) scheme based on comparisons of all core genes against the phylogeny of whole-genome sequences (WGS). Our analysis identified three markers with resolution comparable to that of WGS data. Using newly designed PCR primers for our novel MLST loci, we typed an additional 68 strains of assemblage B. Analyses of these strains and previously determined genome sequences showed that genomes of this assemblage can be assigned to 16 clonal complexes, each with unique gene content that is apparently tuned to differentiity of identifying new markers for accurate and robust molecular typing. Data from comparative analyses of available genomes in this study identified three loci that together form a novel high-resolution typing scheme with high concordance to whole-genome-based phylogenomics and which should aid in future public health endeavors related to this parasite. In addition, data from newly characterized strains suggest evidence of biogeographic and ecologic endemism.CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by the detection and cleavage of invading foreign DNA. Modified versions of this system can be exploited as a biotechnological tool for precise genome editing at a targeted locus. Here, we developed a replicative plasmid that carries the CRISPR-Cas9 system for RNA-programmable genome editing by counterselection in the opportunistic human pathogen Streptococcus pneumoniae Specifically, we demonstrate an approach for making targeted markerless gene knockouts and large genome deletions. After a precise double-stranded break (DSB) is introduced, the cells' DNA repair mechanism of homology-directed repair (HDR) is exploited to select successful transformants. see more This is achieved through the transformation of a template DNA fragment that will recombine in the genome and eliminate recognition of the target of the Cas9 endonuclease. Next, the newly engineered strain can be easily cured from the plasmid, which is temperature sensitive for replication, by growing it at the nonpermissive temperature.

Autoři článku: Laugesenvincent6446 (Jama Michael)