Pettersonelgaard0249

Z Iurium Wiki

Verze z 1. 11. 2024, 17:25, kterou vytvořil Pettersonelgaard0249 (diskuse | příspěvky) (Založena nová stránka s textem „DPMBC is an extrinsic apoptosis inducer, which has potential as a therapeutic agent for cancer therapy.<br /><br /> This study aimed to investigate the eff…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

DPMBC is an extrinsic apoptosis inducer, which has potential as a therapeutic agent for cancer therapy.

This study aimed to investigate the effect of a new 7-(4-(N-substituted carbamoylmethyl) piperazin-1-yl) ciprofloxacin-derivative on the proliferation and migration abilities of HeLa cells.

Cell viability and morphological alterations were examined. Changes in migration were detected using wound healing and colony formation assays. Flow cytometry and western blotting were used to investigate the molecular mechanisms underlying this ciprofloxacin-derivative's action in HeLa cells.

The examined ciprofloxacin-derivative reduced viability of HeLa cells in a concentration-dependent manner and altered cellular morphology, indicating cell death. Furthermore, it significantly inhibited wound closure, even in a non-cytotoxic concentration, and reduced HeLa cell colony formation. In addition, apoptosis was increased probably through significant up-regulation of Bax protein expression and the generation of active cleaved caspase-3 protein.

Our new derivative inhibits proliferation and induces apoptosis of HeLa cells. Furthermore, it suppressed the migration and colony formation abilities of HeLa cells. Therefore, it represents an attractive agent for drug development against cervical cancer based on its anti-metastatic effect.

Our new derivative inhibits proliferation and induces apoptosis of HeLa cells. Selleck Niraparib Furthermore, it suppressed the migration and colony formation abilities of HeLa cells. Therefore, it represents an attractive agent for drug development against cervical cancer based on its anti-metastatic effect.

Despite being a rare disease, melanoma is considered the most dangerous skin cancer due to its highly invasive and aggressive nature, and still requires for more effective treatments. The aim of this study was to evaluate the in vitro anti-melanoma potential of Ephedranthus pisocarpus R.E.Fr. (Annonaceae), a popular Brazilian plant with medicinal properties.

Initially, the ethanolic extract (EtOH) was obtained from E. pisocarpus leaves and later partitioned using increasing polarity solvents. The anti-melanoma potential of E. pisocarpus was assessed by spectrophotometry and its cytotoxicity determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and confocal microscopy.

We demonstrated that the EtOH extract and fractions from E. pisocarpus had a moderate photoprotective action (FPS 3.0-5.0) against UVA radiation. Interestingly, the dichloromethane fraction presented higher anti-melanoma activity against B16-F10 (IC

=46.8 μg/ml) and SK-MEL-28 cells (IC

=40.1 μg/ml) and lesser toxicity on normal cells. Additionally, our study reported that spathulenol, one of the major constituents from E. pisocarpus, acts through an apoptosis-dependent mechanism in SK-MEL-28 cells.

The present study demonstrated, for the first time, the in vitro anti-melanoma potential of E. pisocarpus against melanoma cells.

The present study demonstrated, for the first time, the in vitro anti-melanoma potential of E. pisocarpus against melanoma cells.

Newly synthesized platinum(IV) complexes with ethylenediamine-N,N'-diacetate ligands (EDDA-type) (butyl-Pt and pentyl-Pt) were investigated against two cancer (A549 lung, and HTB 140 melanoma) and one non-cancerous (MRC-5 embryonic lung fibroblast) human cell lines.

The effects of these agents were compared with those of cisplatin after 6-, 24- and 48-h treatment. Sulforhodamine-B (SRB) assay was performed to estimate the cytotoxic effect, while the inhibitory effect on cell proliferation was measured using 5-bromo-2,-deoxyuridine (BrdU) incorporation assay. Cell cycle analysis was performed by flow cytometry. Type of cell death induced by these agents was determined by electrophoretic analysis of DNA, flow cytometry and by western blot analysis of proteins involved in induction of apoptosis. The effects of gamma irradiation, alone and in combination with platinum-based compounds, were examined by clonogenic and SRB assays.

All examined platinum-based compounds had inhibitory and antiproliferative effects on A549 cells, but not on HTB140 and MRC-5 cells. Butyl-Pt, pentyl-Pt and cisplatin arrested the cell cycle in the S-phase and induced apoptotic cell death via regulation of expression of B-cell lymphoma 2 (BCL2) and BCL2-associated X (BAX) proteins. Platinum-based compounds increased the sensitivity of A549 cells to gamma irradiation. Butyl-Pt and pentyl-Pt showed better antitumour effects against A549 cells than did cisplatin, by interfering in cell proliferation and the cell cycle, and by triggering apoptosis.

The effects of gamma irradiation on tumour cells may be amplified by pre-treatment of cells with platinum-based compounds.

The effects of gamma irradiation on tumour cells may be amplified by pre-treatment of cells with platinum-based compounds.

Epithelial to mesenchymal transition (EMT) is a cellular process that facilitates cancer metastasis. Therefore, therapeutic approaches that target EMT have garnered increasing attention. The present study aimed to examine the in vitro effects of ephemeranthol A on cell death, migration, and EMT of lung cancer cells.

Ephemeranthol A was isolated from Dendrobium infundibulum. Non-small cell lung cancer cells H460 were treated with ephemeranthol A and apoptosis was evaluated by Hoechst 33342 staining. Anoikis resistance was determined by soft agar assay. Wound healing assay was performed to test the migration. The regulatory proteins of apoptosis and cell motility were determined by western blot.

Treatment with ephemeranthol A resulted in a concentration-dependent cell apoptosis. At non-toxic concentrations, the compound could inhibit anchorage-independent growth of the cancer cells, as indicated by the decreased colony size and number. Ephemeranthol A also exhibited an inhibitory effect on migration. We further found that ephemeranthol A exerts its antimetastatic effects via inhibition of EMT, as indicated by the markedly decrease of N-cadherin, vimentin, and Slug. Furthermore, the compound suppressed the activation of focal adhesion kinase (FAK) and protein kinase B (Akt) proteins, which are key regulators of cell migration. As for the anticancer activity, ephemeranthol A induced apoptosis by decreasing Bcl-2 followed by the activation of caspase 3 and caspase 9.

The pro-apoptotic and anti-migratory effects of ephemeranthol A on human lung cancer cells support its use for the development of novel anticancer therapies.

The pro-apoptotic and anti-migratory effects of ephemeranthol A on human lung cancer cells support its use for the development of novel anticancer therapies.

Autoři článku: Pettersonelgaard0249 (Lillelund Sloan)