Beachsantana1831
Gene delivery based on bioactive coatings on collagen has great potential for applications in bone repair. Meanwhile, controlled gene delivery at specific times/regions is essential for an efficient and complete bone reconstruction process. However, spatio-temporal regulation of gene release and delivery remains a great challenge. In this paper, we used visible light illumination to effectively regulate gene release and subsequent delivery into biological cells. A visible light responsive and bioactive nanocomposite coating (based on collagen/gold nanoparticles, e.g., Col/AuNPs) was prepared through hydrothermal and sol-gel processes and was used as a loading platform for complexes of enhanced green fluorescent protein and Lipofectamine2000 (LF/GFP). The results showed that the amount of immobilized LF/GFP was increased on Col/AuNPs and the release of pre-adsorbed LF/GFP was significantly enhanced in a spatio-temporal and controlled manner under visible light illumination. NMS-873 ic50 Moreover, the cellular intake of the released genes was improved, thus enhancing the gene expression efficiency of the cells. The mechanism of enhanced controlled gene delivery was attributed to the changes in collagen structures and rearrangement of cytoskeletal structures induced by the photothermal effect. The developed Col/AuNP composite coating is effective for both controlled surface-mediated gene delivery and gene-mediated bone repair.Amino acids and related compounds constitute a class of biomarkers which is analyzed for early diagnosis of metabolic diseases (MDs). Protocols based on liquid chromatography hyphenated to tandem mass spectrometry (LC-MS/MS) are routinely used for MD diagnosis. Our ultimate objective is to evaluate the analytical performance of differential mobility spectrometry (DMS) hyphenated to MS/MS, in the perspective of using DMS-MS/MS as an alternative or complementary method for the topics of emergency in metabolic diagnosis and newborn rapid screening. The aim of the present study is to evaluate the robustness of a DMS-MS/MS protocol for the separation, identification, and quantification of amino acids and related compounds. Performance in terms of peak capacity and separation of isobaric and isomeric species is compared to those using drift tube type ion mobility spectrometry instruments. High reproducibility of the measurement of the DMS compensation voltage (CV) of metabolites shows that this CV parameter, or the corresponding electric field, could be used for application in metabolite identification. Multiple measurements show that the CV value of each AA or related compound is stable over a large period of time (6 months). Potential effects of matrix or concentration of the analytes on the DMS identifier are found to be negligible. Quantification of a selected set of metabolites in human plasmas has been carried out. The method linearity, intra-assay and inter-assay precision, detection limit, quantification limit and trueness analysis were assessed as adequate for both physiological and pathological conditions. Concentration levels of metabolites derived with our DMS-MS protocols were found to be in good agreement with those obtained with routine LC-MS/MS protocols used for the diagnosis of MDs at the Hospital Robert Debré (Paris).Unprecedented nano-carbon hybrids consisting of exfoliated ultrathin graphite (or single-walled carbon nanotubes) with pristine C60 molecules attached on the surfaces have been produced in water in the presence of p-phosphonic acid calix[8]arene. The amphiphilic calixarene plays multiple roles in these processes to provide water dispersibility and π-π interactions with flexible conformations complementing curvatures of the carbon surfaces. The significantly increased water solubility and area of exposure of C60 enable efficient activation of reactive oxygen species for enhanced phototoxicity to SH-SY5Y human neuroblastoma cell line under laser irradiation.Invasive aspergillosis (IA) is one of the most common fungal infections among immunocompromised individuals. Despite the availability of antifungal drugs, IA can cause >50% mortality in infected immunocompromised patients. It is crucial to determine both host and pathogen factors that contribute to infection susceptibility and low survival rates in infected patients in order to develop novel therapeutics. Innate immune responses play a pivotal role in recognition and clearance of Aspergillus spores, though little is known about the exact cellular and molecular mechanisms. Reliable models are required to investigate detailed mechanistic interactions between the host and pathogen. The optical clarity and genetic tractability of zebrafish larvae make them an intriguing model to study host-pathogen interactions of multiple human bacterial and fungal infections in a live and intact host. This protocol describes a larval zebrafish Aspergillus infection model. First, Aspergillus spores are isolated and injected into the zebrafish hindbrain ventricle via microinjection. Then, chemical inhibitors such as immunosuppressive drugs are added directly to the larval water. Two methods to monitor the infection in injected larvae are described, including the 1) homogenization of larvae for colony forming unit (CFU) enumeration and 2) a repeated, daily live imaging setup. Overall, these techniques can be used to mechanistically analyze the progression of Aspergillus infection in vivo and can be applied to different host backgrounds and Aspergillus strains to interrogate host-pathogen interactions.Despite its limited analytical specificity and ruggedness, the thiobarbituric acid reactive substances (TBARS) assay has been widely used as a generic metric of lipid peroxidation in biological fluids. It is often considered a good indicator of the levels of oxidative stress within a biological sample, provided that the sample has been properly handled and stored. The assay involves the reaction of lipid peroxidation products, primarily malondialdehyde (MDA), with thiobarbituric acid (TBA), which leads to the formation of MDA-TBA2 adducts called TBARS. TBARS yields a red-pink color that can be measured spectrophotometrically at 532 nm. The TBARS assay is performed under acidic conditions (pH = 4) and at 95 °C. Pure MDA is unstable, but these conditions allow the release of MDA from MDA bis(dimethyl acetal), which is used as the analytical standard in this method. The TBARS assay is a straightforward method that can be completed in about 2 h. Preparation of assay reagents are described in detail here. Budget-conscious researchers can use these reagents for multiple experiments at a low cost rather than buying an expensive TBARS assay kit that only permits construction of a single standard curve (and thus can only be used for one experiment).