Zhukolding9313
Chikungunya virus (CHIKV) is a reemerging and rapidly spreading pathogen transmitted by mosquitoes. The emergence of new epidemic variants of the virus is associated with genetic evolutionary traits, including duplication of repeated RNA elements in the 3' untranslated region (UTR) that seemingly favor transmission by mosquitoes. The transmission potential of a given variant results from a complex interplay between virus populations and anatomical tissue barriers in the mosquito. Here, we used the wild-type CHIKV Caribbean strain and an engineered mutant harboring a deletion in the 3' UTR to dissect the interactions of virus variants with the anatomical barriers that impede transmission during the replication cycle of the virus in Aedes mosquitoes. Compared to the 3'-UTR mutant, we observed that the wild-type virus had a short extrinsic incubation period (EIP) after an infectious blood meal and was expectorated into mosquito saliva much more efficiently. We found that high viral titers in the midgut are not s a delayed replication rate in mosquitoes, which lengthened the extrinsic incubation period (EIP) and reduced fitness relative to the wild-type virus. As a result, the mutant virus displayed a reduced capacity to cross anatomical barriers during the infection cycle in mosquitoes, thus reducing the virus transmission rate. Our findings show how selective pressures act on CHIKV noncoding regions to select variants with shorter EIPs that are preferentially transmitted by the mosquito vector.Herpes simplex virus 1 (HSV-1) induces a profound host shutoff during lytic infection. The virion host shutoff (vhs) protein plays a key role in this process by efficiently cleaving host and viral mRNAs. Furthermore, the onset of viral DNA replication is accompanied by a rapid decline in host transcriptional activity. To dissect relative contributions of both mechanisms and elucidate gene-specific host transcriptional responses throughout the first 8 h of lytic HSV-1 infection, we used transcriptome sequencing of total, newly transcribed (4sU-labeled) and chromatin-associated RNA in wild-type (WT) and Δvhs mutant infection of primary human fibroblasts. Following virus entry, vhs activity rapidly plateaued at an elimination rate of around 30% of cellular mRNAs per hour until 8 h postinfection (p.i.). In parallel, host transcriptional activity dropped to 10 to 20%. While the combined effects of both phenomena dominated infection-induced changes in total RNA, extensive gene-specific transcriptional regulation waobal loss of host transcriptional activity, during productive HSV-1 infection. Selleckchem CX-3543 In general, HSV-1-induced alterations in total RNA levels were dominated by these two global effects. In contrast, chromatin-associated RNA depicted gene-specific transcriptional changes. This revealed highly concordant transcriptional changes in WT and Δvhs infections, confirmed DUX4 as a key transcriptional regulator in HSV-1 infection, and identified vhs-dependent transcriptional downregulation of the integrin adhesome and extracellular matrix components. The latter explained seemingly gene-specific effects previously attributed to vhs-mediated mRNA degradation and resulted in a concordant loss in protein levels by 8 h p.i. for many of the respective genes.The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer is transported through the secretory pathway to the infected cell surface and onto virion particles. In the Golgi, the gp160 Env precursor is modified by complex sugars and proteolytically cleaved to produce the mature functional Env trimer, which resists antibody neutralization. We observed mostly uncleaved gp160 and smaller amounts of cleaved gp120 and gp41 Envs on the surface of HIV-1-infected or Env-expressing cells; however, cleaved Envs were relatively enriched in virions and virus-like particles (VLPs). This relative enrichment of cleaved Env in VLPs was observed for wild-type Envs, for Envs lacking the cytoplasmic tail, and for CD4-independent, conformationally flexible Envs. On the cell surface, we identified three distinct populations of Envs (i) the cleaved Env was transported through the Golgi, was modified by complex glycans, formed trimers that cross-linked efficiently, and was recognized by broadly neutralizing as from the surface of the infected cell. We found that an uncleaved form of Env is transported to the cell surface by an unconventional route, but this nonfunctional Env is mostly excluded from the virus. Thus, only one of the pathways by which Env is transported to the surface of infected cells results in efficient incorporation into virus particles, potentially allowing the uncleaved Env to act as a decoy to the host immune system without compromising virus infectivity.Lung cancer remains the leading cause of cancer deaths in the United States and the world. Early detection of this disease can reduce mortality, as demonstrated for low-dose computed tomography (LDCT) screening. However, there remains a need for improvements in lung cancer detection to complement LDCT screening and to increase adoption of screening. Molecular changes in the tumor, and the patient's response to the presence of the tumor, have been examined as potential biomarkers for diagnosing lung cancer. There are significant challenges to developing an effective biomarker with sufficient sensitivity and specificity for the early detection of lung cancer, particularly the detection of circulating tumor DNA, which is present in very small quantities. We will review approaches to develop biomarkers for the early detection of lung cancer, with special consideration to detection of rare tumor events, focus on the use of DNA methylation-based detection in plasma and sputum, and discuss the promise and challenges of lung cancer early detection. Plasma-based detection of lung cancer DNA methylation may provide a simple cost-effective method for the early detection of lung cancer.See all articles in this CEBP Focus section, "NCI Early Detection Research Network Making Cancer Detection Possible."
Clinician burnout is an important occupational hazard that may be exacerbated by the novel COVID-19 pandemic. Within Southeast Asia, burnout in gastroenterology is understudied. The primary objective of this study is to estimate the prevalence of burnout symptoms within gastroenterology, in member states of the Associations of Southeast Asian Nations (ASEAN), during and after the COVID-19 pandemic. The secondary objective is to identify work-related stressors that contribute to burnout in ASEAN gastroenterologists.
This is an observational study that will use anonymised online surveys to estimate the prevalence of burnout symptoms at two time points during the COVID-19 pandemic in 2020 and in 2022 (assumed to be after the pandemic). Gastroenterologists from Singapore, Malaysia, Thailand, Indonesia, Philippines and Brunei will be invited to participate in the online survey through their national gastroenterology and endoscopy societies. Burnout will be assessed using the Maslach Burnout Inventory-Human Services Survey tool.