Burnsbalslev5974
New deformation models have been developed to focus on the structural evolution on the length scale of lamellar stacks, which consider the potential microphase separation of the interlamellar amorphous phase and microbuckling. For solution systems, the coupled effects of the mechanical work from external force and the chemical potential from possible chemical reactions are taken into account for the structural evolution during stretching in solution. Roadmaps of structural and morphological evolution in the processing parameter space (i.e., temperature, stress, strain and the concentration of additive in the bath solution) are eventually constructed for precursor films. The accumulation of a structural evolution database for post-stretching processing of polymer films can be expected to provide a helpful guide for industrial processing for high-performance polymers in the near future.A pharmacophoric motif decorated with supramolecular functionalities (TZT) was designed for potential interaction with biological targets. Main insights of this work include the correlation of supra functionalities of TZT with its binding ability to proteins leading to the modulation of their structure and bioactivity as a promising perspective in the field of cellular protection from oxidative stress. To investigate the role of TZT in obliterating oxidative stress at a molecular level, its binding propensity with bovine serum albumin (BSA) and bovine liver catalase (BLC) was characterized using various biophysical methods. RRx-001 mouse The binding constants of TZT with BSA (Kb = 2.09 × 105 M-1) and BLC (Kb = 2.349 × 105 M-1) indicate its considerable interaction with these proteins. TZT efficiently triggers favourable structural changes in BLC, thereby enhancing its enzyme activity in a dose dependent manner. The enzyme kinetics parameters of TZT binding to BLC were quantified using the Michaelis-Menten model. Both in silico and experimental results suggest that an increased substrate availability could be the reason for enhanced BLC activity. Furthermore, physiological relevance of this interaction was demonstrated by investigating the ability of TZT to attenuate oxidative stress. Treatment with TZT was found to mitigate the inhibition of A549 cell proliferation in the presence of high concentrations of vitamin C. This finding was confirmed at a molecular level by PARP cleavage status, demonstrating that TZT inhibits apoptotic cell death induced by oxidative stress.This study examines nonlinear rheological responses to uniaxial extension of two entangled polystyrene (PS) solutions and two PS melts. Several unusual characteristics are revealed. The pair of the PS solutions have the same number of entanglements per chain (because of the same concentration) but well separated effective glass transition temperatures Tg. When examined at a common effective rate of extension (e.g., the same Rouse-Weissenberg number WiR) and at a comparable distance from their respective Tg, the solution A with lower Tg, examined at a lower temperature, shows stronger stress responses when WiR > 1. At the same test temperature and a common WiR, the solution A is still found to display a stronger stress response than the solution B that is made of the same fraction of parent PS in a second solvent also made of oligomeric PS of higher molecular weight. Finally, there are two features intrinsic to each of the four PS samples. First, at the same WiR they show reduced stress level at a lower temperature. Second, at sufficiently high applied Hencky rates, they show limiting rate behavior, i.e., undergoing the same melt rupture independent of the applied rate. These remarkable rheological responses indicate major theoretical difficulties facing the subject of nonlinear extensional rheology of entangled polymers.One of the most striking properties of Nafion is the formation of a long-range solute exclusion zone (EZ) in contact with water. The mechanism of formation of this EZ has been the subject of a controversial and long-standing debate. Previous studies by Schurr et al. and Florea et al. root the explanation of this phenomenon in the ion-exchange properties of Nafion, which generates ion diffusion and ion gradients that drive the repulsion of solutes by diffusiophoresis. Here we have evaluated separately the electrophoretic and chemiphoretic contributions to multi-ionic diffusiophoresis using differently charged colloidal tracers as solutes to identify better their contribution in the EZ formation. Our experimental results, which are also supported by numerical simulations, show that the electric field, built up due to the unequal diffusion coefficients of the exchanged ions, is the dominant parameter behind such interfacial phenomenon in the presence of alkali metal chlorides. The EZ formation depends on the interplay of the electric field with the zeta potential of the solute and can be additionally modulated by changing ion diffusion coefficients or adding salts. As a consequence, we show that not all solutes can be expelled from the Nafion interface and hence the EZ is not always formed. This study thus provides a more detailed description of the origin and dynamics of this phenomenon and opens the door to the rational use of this active interface for many potential applications.Carrier-free nanodrugs, generated via the straightforward small-molecule self-assembly of anticancer drugs, provide a promising route for cancer chemotherapy. However, their low structural stability, lack of targeting specificity, and poor stimulus responsiveness are still limiting their therapeutic effect. Inspired by Watson-Crick G[triple bond, length as m-dash]C base pairing, the FDA-approved chemo-drug methotrexate (MTX, which can bind with folate receptors) and 5-fluorouracil (5-FU, a DNA/RNA synthetase inhibitor) were adopted for direct assembly into self-recognizing MTX-5-FU nanoparticles via "Watson-Crick-like base pairing"-driven precise supramolecular assembly. Sequentially, our synthesized weak acidity-responsive polyethylene glycol (PEG) was inserted onto the nanoparticle surface to temporarily shield the self-targeting function of MTX and prolong the blood circulation time. Once PEG-MTX-5-FU nanoparticles reached the weakly acidic tumor microenvironment, the PEG corona could be cleaved from their surface and then MTX could be re-exposed to recover its self-recognition ability and significantly elevate tumor cell uptake; furthermore, the de-PEGylated MTX-5-FU nanoparticles could respond to the stronger acidity of lysosome, triggering core disassembly and thus the burst release of both MTX and 5-FU.