Mccallvega7406
Additionally, the increase in CIF could help migrating birds to deal with novel pathogens they may encounter at stopover sites. © 2020 The Authors.The recruitment and biomass of a fish stock are influenced by their environmental conditions and anthropogenic pressures such as fishing. The variability in the environment often translates into fluctuations in recruitment, which then propagate throughout the stock biomass. In order to manage fish stocks sustainably, it is necessary to understand their dynamics. Here, we systematically explore the dynamics and sensitivity of fish stock recruitment and biomass to environmental noise. Using an age-structured and trait-based model, we explore random noise (white noise) and autocorrelated noise (red noise) in combination with low to high levels of harvesting. We determine the vital rates of stocks covering a wide range of possible body mass (size) growth rates and asymptotic size parameter combinations. Our study indicates that the variability of stock recruitment and biomass are probably correlated with the stock's asymptotic size and growth rate. We find that fast-growing and large-sized fish stocks are likely to be less vulnerable to disturbances than slow-growing and small-sized fish stocks. We show how the natural variability in fish stocks is amplified by fishing, not just for one stock but for a broad range of fish life histories. © 2020 The Authors.The study aimed to evaluate sensory laterality and concentration of faecal immunoglobulin A (IgA) as non-invasive measures of stress in horses by comparing them with the already established measures of motor laterality and faecal glucocorticoid metabolites (FGMs). Eleven three-year-old horses were exposed to known stressful situations (change of housing, initial training) to assess the two new parameters. Sensory laterality initially shifted significantly to the left and faecal FGMs were significantly increased on the change from group to individual housing and remained high through initial training. Motor laterality shifted significantly to the left after one week of individual stabling. Faecal IgA remained unchanged throughout the experiment. We therefore suggest that sensory laterality may be helpful in assessing acute stress in horses, especially on an individual level, as it proved to be an objective behavioural parameter that is easy to observe. Comparably, motor laterality may be helpful in assessing long-lasting stress. The results indicate that stress changes sensory laterality in horses, but further research is needed on a larger sample to evaluate elevated chronic stress, as it was not clear whether the horses of the present study experienced compromised welfare, which it has been proposed may affect faecal IgA. © 2020 The Authors.Marine mammals and diving birds face several physiological challenges under water, affecting their thermoregulation and locomotion as well as their sensory systems. Therefore, marine mammals have modified ears for improved underwater hearing. Underwater hearing in birds has been studied in a few species, but for the record-holding divers, such as penguins, there are no detailed data. We played underwater noise bursts to gentoo penguins (Pygoscelis papua) in a large tank at received sound pressure levels between 100 and 120 dB re 1 µPa RMS. The penguins showed a graded reaction to the noise bursts, ranging from no reactions at 100 dB to strong reactions in more than 60% of the playbacks at 120 dB re 1 µPa. The responses were always directed away from the sound source. The fact that penguins can detect and react to underwater stimuli may indicate that they make use of sound stimuli for orientation and prey detection during dives. Further, it suggests that penguins may be sensitive to anthropogenic noise, like many species of marine mammals. © 2020 The Authors.The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks histones in nucleosomal fibres-where the HP1-H3K9me2/3 interaction represents the most evolutionarily conserved paradigm-could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell. © 2020 The Authors.While many animals are negatively affected by urbanization, some species appear to thrive in urban environments. Herring gulls (Larus argentatus) are commonly found in urban areas and often scavenge food discarded by humans. Despite increasing interactions between humans and gulls, little is known about the cognitive underpinnings of urban gull behaviour and to what extent they use human behavioural cues when making foraging decisions. We investigated whether gulls are more attracted to anthropogenic items when they have been handled by a human. We first presented free-living gulls with two identical food objects, one of which was handled, and found that gulls preferentially pecked at the handled food object. check details We then tested whether gulls' attraction to human-handled objects generalizes to non-food items by presenting a new sample of gulls with two non-food objects, where, again, only one was handled. While similar numbers of gulls approached food and non-food objects in both experiments, they did not peck at handled non-food objects above chance levels.