Higginscarrillo1389

Z Iurium Wiki

Verze z 31. 10. 2024, 13:25, kterou vytvořil Higginscarrillo1389 (diskuse | příspěvky) (Založena nová stránka s textem „The effectiveness of probiotic consumption in controlling dyslipidemia in type 2 diabetes mellitus (T2DM) has been unclear. [https://www.selleckchem.com/pr…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The effectiveness of probiotic consumption in controlling dyslipidemia in type 2 diabetes mellitus (T2DM) has been unclear. read more We reviewed relevant randomized controlled trials (RCTs) to clarify the effect of probiotic intake on dyslipidemia in T2DM patients. The Web of Science, Scopus, PubMed and Cochrane Library databases were used for searching relevant RCTs published up to October 2020. The total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) concentrations were selected as the primary indicators for dyslipidemia. The results of 13 eligible RCTs showed that probiotic intake could significantly reduce TC (SMD -0.23, 95% CI (-0.37, -0.10)) and TG (SMD -0.27, 95% CI (-0.44, -0.11)) levels, but did not regulate LDL-C or HDL-C concentrations. Subgroup analysis showed that multispecies probiotics (≥two species), but not single-species probiotics, significantly decreased TC and TG concentrations. Furthermore, powder, but not liquid, probiotics could reduce TC and TG concentrations. This meta-analysis demonstrated that probiotic supplementation is helpful in reducing TC and TG concentrations in T2DM patients. However, more well-controlled trials are needed to clarify the benefits of probiotics on dyslipidemia in T2DM patients.The pure Soqotri resin of Dracaena cinnabari Balf.f. (Dracaenaceae) has no volatile smell due to its low content of volatile constituents. Although it is insoluble in n-Hexane, we found that the resin, when suspended in n-Hexane within five days at 5 °C, led to the extraction of a small portion of a single volatile liquid constituent, which was identified by GC-MS as sesquiterpene β-caryophyllene. This method of extracting the volatile constituents using hexane under cooling is very suitable for resins of the Dracaena species because these resins usually contain very few volatile terpenes and/or non-terpenes, and they may contain only one volatile terpene per resin as this study result. β-Caryophyllene was identified and separated for the first time from the Soqotri standard resin of Dracaena cinnabari. Therefore, β-caryophyllene, as a new chemical property, can support to evaluate the purity of the Soqotri resin. Moreover, a big mass of D. cinnabari resin can yield concentrated β-caryophyllene as a liquid extract for further pharmaceutical and nutraceutical applications.Cold in-place recycling with bitumen emulsion is a good environmental option for road conservation. The technique produces lower CO2 emissions because the product is manufactured and spread in the same location as the previous infrastructure, and its mixing with bitumen emulsion occurs at room temperature. Adding materials with cementitious characteristics gives the final mixture greater resistance and durability, and incorporating an industrial by-product such as ladle furnace slag (of which cementitious characteristics have been corroborated by various authors) enables the creation of sustainable, resistant pavement. This paper describes the incorporation of ladle furnace slag in reclaimed asphalt pavements (RAP) to execute in-place asphalt pavement recycling with bitumen emulsion. Various test groups of samples with increasing percentages of emulsion were created to study both the density of the mixtures obtained, and their dry and post-immersion compressive strength. To determine these characteristics, the physical and chemical properties of the ladle furnace slag and the reclaimed asphalt pavements were analyzed, as well as compatibility with the bitumen emulsion. The aforementioned tests define an optimal combination of RAP (90%), ladle furnace slag (10%), water (2.6%), and emulsion (3.3%), which demonstrated maximum values for compressive strength of the dry and post-immersion bituminous mixture. These tests therefore demonstrate the suitability of ladle furnace slag for cold in-place recycling with bitumen emulsion.Oxidized low-density lipoprotein (oxLDL) and oxidized high-density lipoprotein (oxHDL), known as risk factors for cardiovascular disease, have been observed in plasma and atheromatous plaques. In a previous study, the content of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) species stayed constant in isolated in vivo oxLDL but increased in copper-induced oxLDL in vitro. In this study, we prepared synthetic deuterium-labeled 1-palmitoyl lysoPC and palmitoyl-glutaroyl PC (PGPC), a short chain-oxPC to elucidate the metabolic fate of oxPC and lysoPC in oxLDL in the presence of HDL. When LDL preloaded with d13-lysoPC was mixed with HDL, d13-lysoPC was recovered in both the LDL and HDL fractions equally. d13-LysoPC decreased by 50% after 4 h of incubation, while d13-PC increased in both fractions. Diacyl-PC production was abolished by an inhibitor of lecithin-cholesterol acyltransferase (LCAT). When d13-PGPC-preloaded LDL was incubated with HDL, d13-PGPC was transferred to HDL in a dose-dependent manner when both LCAT and lipoprotein-associated phospholipase A2 (Lp-PLA2) were inhibited. Lp-PLA2 in both HDL and LDL was responsible for the hydrolysis of d13-PGPC. These results suggest that short chain-oxPC and lysoPC can transfer between lipoproteins quickly and can be enzymatically converted from oxPC to lysoPC and from lysoPC to diacyl-PC in the presence of HDL.Dimethylolpropionic acid (DMPA) internal emulsifier has been added before, during and after prepolymer formation in the synthesis of waterborne poly(urethane-urea)s (PUDs) and their structure-properties relationships have been assessed. PUDs were characterized by pH, viscosity and particle size measurements, and the structure of the poly(urethane-urea) (PU) films was assessed by infra-red spectroscopy, differential scanning calorimetry, X-ray diffraction, thermal gravimetric analysis, plate-plate rheology and dynamic mechanical thermal analysis. The adhesion properties of the PUDs were measured by cross-hatch adhesion and T-peel test. The lowest pH value and the highest mean particle size were found in the PUD made by adding DMPA after prepolymer formation, all PUDs showed relatively ample mono-modal particle size distributions. The highest viscosity and noticeable shear thinning were obtained in the PUD made by adding DMPA during prepolymer formation. Depending on the stage of addition of DMPA, the length of the prepolymer varied and the PU films showed different degree of micro-phase separation.

Autoři článku: Higginscarrillo1389 (Bonner Knudsen)