Watersblanchard4429
Furthermore, significant epistatic interaction was found between TRD1.3 and TRD8.1 suggesting that TRD could positively contribute to breaking intersubspecific reproductive barriers. Our results have laid the foundation for identifying the TRD genes and provide an effective strategy to breakdown TRD for breeding wide-compatible lines, which will be further utilized in the intersubspecific hybrid breeding programs.Gastrodia elata, also named Tianma, is a valuable traditional Chinese herbal medicine. It has numerous important pharmacological roles such as in sedation and lowering blood pressure and as anticonvulsant and anti-aging, and it also has effects on the immune and cardiovascular systems. The whole genome sequencing of G. elata has been completed in recent years, which provides a strong support for the construction of the G. elata gene functional analysis platform. Therefore, in our research, we collected and processed 39 transcriptome data of G. elata and constructed the G. elata gene co-expression networks, then we identified functional modules by the weighted correlation network analysis (WGCNA) package. Furthermore, gene families of G. elata were identified by tools including HMMER, iTAK, PfamScan, and InParanoid. Finally, we constructed a gene functional analysis platform for G. elata . In our platform, we introduced functional analysis tools such as BLAST, gene set enrichment analysis (GSEA), and cis-elements (motif) enrichment analysis tool. In addition, we analyzed the co-expression relationship of genes which might participate in the biosynthesis of gastrodin and predicted 19 mannose-binding lectin antifungal proteins of G. elata. We also introduced the usage of the G. elata gene function analysis platform (GelFAP) by analyzing CYP51G1 and GFAP4 genes. Our platform GelFAP may help researchers to explore the gene function of G. elata and make novel discoveries about key genes involved in the biological processes of gastrodin.Downy mildew, caused by the oomycete Peronospora effusa, is the most economically important disease on spinach. Fourteen new races of P. effusa have been identified in the last three decades. The frequent emergence of new races of P. Cabotegravir concentration effusa continually overcome the genetic resistance to the pathogen. The objectives of this research were to more clearly map the downy mildew resistance locus RPF1 in spinach, to identify single nucleotide polymorphism (SNP) markers associated with the resistance, and to refine the candidate genes responsible for the resistance. Progeny from populations generated from crosses of cultivars resistant (due to RPF1) to race 13 of P. effusa (Swan, T-Bird, Squirrel, and Tonga) with race 13 susceptible cultivars (Whale and Polka) were inoculated and the downy mildew disease response determined. Association analysis was performed in TASSEL, GAPIT, PLINK, and GENESIS programs using SNP markers identified from genotyping by sequencing (GBS). Association analysis mapped the race 13 resistance loci (RPF1) to positions 0.39, 0.69, 0.94-0.98, and 1.2 Mb of chromosome 3. The associated SNPs were within 1-7 kb of the disease resistance genes Spo12784, Spo12719, Spo12905, and Spo12821, and 11-18 Kb from Spo12903. This study extended our understanding of the genetic basis of downy mildew resistance in spinach and provided the most promising candidate genes Spo12784 and Spo12903 near the RPF1 locus, to pursue functional validation. The SNP markers may be used to select for the resistant lines to improve genetic resistance against the downy mildew pathogen and in developing durably resistant cultivars.The centromere is a unique part of the chromosome combining a conserved function with an extreme variability in its DNA sequence. Most of our knowledge about the functional centromere organization is obtained from species with small and medium genome/chromosome sizes while the progress in plants with big genomes and large chromosomes is lagging behind. Here, we studied the genomic organization of the functional centromere in Allium fistulosum and A. cepa, both species with a large genome (13 Gb and 16 Gb/1C, 2n = 2x = 16) and large-sized chromosomes. Using low-depth DNA sequencing for these two species and previously obtained CENH3 immunoprecipitation data we identified two long (1.2 Kb) and high-copy repeats, AfCen1K and AcCen1K. FISH experiments showed that AfCen1K is located in all centromeres of A. fistulosum chromosomes while no AcCen1K FISH signals were identified on A. cepa chromosomes. Our molecular cytogenetic and bioinformatics survey demonstrated that these repeats are partially similar but differ in chromosomal location, sequence structure and genomic organization. In addition, we could conclude that the repeats are transcribed and their RNAs are not polyadenylated. We also observed that these repeats are associated with insertions of retrotransposons and plastidic DNA and the landscape of A. cepa and A. fistulosum centromeric regions possess insertions of plastidic DNA. Finally, we carried out detailed comparative satellitome analysis of A. cepa and A. fistulosum genomes and identified a new chromosome- and A. cepa-specific tandem repeat, TR2CL137, located in the centromeric region. Our results shed light on the Allium centromere organization and provide unique data for future application in Allium genome annotation.Melatonin, widely found in various plants as a new antioxidant, could protect plants from various biotic and/or abiotic stresses, including salt stress. MzASMT 1 (KJ123721), a gene from Malus zumi Mats, is a key enzyme required for melatonin synthesis. However, whether the overexpression of MzASMT 1 could regulate the synthesis of melatonin and improve the salt tolerance in tobacco remains unknown. In this study, the overexpression of MzASMT 1 in tobacco increased the melatonin content, and the transgenic lines owned higher salt tolerance capacity. The transgenic lines overexpressing MzASMT 1 exhibited lower degree of leaf wilting; much more fresh weight; higher plant height; longer root; higher relative water content (RWC) of leaves, stem, and root; and higher chlorophyll content and Fv/Fm, which makes transgenic lines better adapt to salt stress. The transgenic lines also had higher accumulation of proline, lower accumulation of malondialdehyde (MDA), and improved antioxidant systems, which protected plants from cell damage and oxidative stress due to excess reactive oxygen species (ROS) accumulation under salt treatment.