Rafnsvenningsen5275
ese results suggest that the anti-inflammatory effects induced by PGD2-G can be further augmented by inactivating CES1 activity with specific small-molecule inhibitors, while pro-inflammatory effects of PGE2-G are attenuated. Furthermore, PGD2-G (and/or its downstream metabolites) was shown to activate the lipid-sensing receptor PPARγ, resulting in altered "alternative macrophage activation" response to the Th2 cytokine interleukin-4. These findings suggest that inhibition of CES1 and other enzymes that regulate the levels of pro-resolving mediators such as PGD2-G in specific cellular niches might be a novel anti-inflammatory approach.Delignification is essential in effective utilization of carbohydrates of lignocellulosic biomass. Characteristics of the delignification are important for the yield and property of the resulting carbohydrates. Oxidation with O2 of biomass in alkaline water can potentially produce high-purity cellulose at high yield. The present authors chose a Japanese cedar and investigated its oxidative delignification at 90 °C. The delignification selectivity was determined mainly by the chemical structures of lignin and cellulose. Treatment conditions, except for temperature, hardly changed the relationship between delignification rate and cellulose retention. During the treatment, dissolved lignin underwent chemical condensation in the aqueous phase. check details This "unfavorable" condensation consumed O2-derived active species, slowing down further delignification. Repeated short-time oxidation with renewal of alkaline water suppressed the condensation, enhancing the delignification. Repetition of 2-h treatments four times achieved 96% delignification, which was 8% higher than a single 8-h treatment at 130 °C.Mn3O4 is considered to be a promising anode material for sodium-ion batteries (SIBs) because of its low cost, high capacity, and enhanced safety. However, the inferior cyclic stability of the Mn3O4 anode is a major challenge for the development of SIBs. In this study, a one-step solvothermal method was established to produce nanostructured Mn3O4 with an average particle size of 21 nm and a crystal size of 11 nm. The Mn3O4 obtained exhibits a unique architecture, consisting of small clusters composed of numerous tiny nanoparticles. The Mn3O4 material could deliver high capacity (522 mAh g-1 at 100 mA g-1), reasonable cyclic stability (158 mAh g-1 after 200 cycles), and good rate capability (73 mAh g-1 at 1000 mA g-1) even without further carbon coating, which is a common exercise for most anode materials so far. The sodium insertion/extraction was also confirmed by a reversible conversion reaction by adopting an ex situ X-ray diffraction technique. This simple, cost-effective, and environmentally friendly synthesis technique with good electrochemical performance shows that the Mn3O4 nanoparticle anode has the potential for SIB development.The concept of drug recycle by recovering active pharmaceutical ingredients (APIs) from unused tablets and capsules was demonstrated using acetaminophen, tetracycline HCl, and (R,S)-(±)-ibuprofen as case examples. The recovery process comprised three core unit operations solid-liquid extraction, filtration, and crystallization. Recovery yields of 58.7 wt %, 73.1 wt %, and 67.6 wt % for acetaminophen, tetracycline HCl, and (R,S)-(±)-ibuprofen were achieved, respectively. More importantly, all of the APIs were of high purity based on high-performance liquid chromatography assay. The crystal forms of the recovered APIs were in conformity with the standards.Guanosine monophosphate, the precursor for riboflavin biosynthesis, can be converted to or generated from other purine compounds in purine metabolic networks. In this study, genes in these networks were manipulated in a riboflavin producer, Bacillus subtilis R, to test their contribution to riboflavin biosynthesis. Knocking out adenine phosphoribosyltransferase (apt), xanthine phosphoribosyltransferase (xpt), and adenine deaminase (adeC) increased the riboflavin production by 14.02, 6.78, and 41.50%, respectively, while other deletions in the salvage pathway, interconversion pathway, and nucleoside decomposition genes have no positive effects. The enhancement of riboflavin production in apt and adeC deletion mutants is dependent on the purine biosynthesis regulator PurR. Repression of ribonucleotide reductases (RNRs) led to a 13.12% increase of riboflavin production, which also increased in two RNR regulator mutants PerR and NrdR by 37.52 and 8.09%, respectively. The generation of deoxyribonucleoside competed for precursors with riboflavin biosynthesis, while other pathways do not contribute to the supply of precursors; nevertheless, they have regulatory effects.In enterocytes, protein RS1 (RSC1A1) mediates an increase of glucose absorption after ingestion of glucose-rich food via upregulation of Na+-d-glucose cotransporter SGLT1 in the brush-border membrane (BBM). Whereas RS1 decelerates the exocytotic pathway of vesicles containing SGLT1 at low glucose levels between meals, RS1-mediated deceleration is relieved after ingestion of glucose-rich food. Regulation of SGLT1 is mediated by RS1 domain RS1-Reg, in which Gln-Ser-Pro (QSP) is effective. In contrast to QSP and RS1-Reg, Gln-Glu-Pro (QEP) and RS1-Reg with a serine to glutamate exchange in the QSP motif downregulate the abundance of SGLT1 in the BBM at high intracellular glucose concentrations by about 50%. We investigated whether oral application of QEP improves diabetes in db/db mice and affects the induction of diabetes in New Zealand obese (NZO) mice under glucolipotoxic conditions. After 6-day administration of drinking water containing 5 mM QEP to db/db mice, fasting glucose was decreased, increase of blood glucose in the oral glucose tolerance test was blunted, and insulin sensitivity was increased. When QEP was added for several days to a high fat/high carbohydrate diet that induced diabetes in NZO mice, the increase of random plasma glucose was prevented, accompanied by lower plasma insulin levels. QEP is considered a lead compound for development of new antidiabetic drugs with more rapid cellular uptake. In contrast to SGLT1 inhibitors, QEP-based drugs may be applied in combination with insulin for the treatment of type 1 and type 2 diabetes, decreasing the required insulin amount, and thereby may reduce the risk of hypoglycemia.